

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 246

Design and Implementation of
an Extensible Learner-Adaptive Environment

Kiyoshi Nakabayashi*

Faculty of Information and Computer Science

Chiba Institute of Technology

2-17-1 Tsudanuma, Narashino-Shi, Chiba 275-0016, Japan

E-mail: knaka@net.it-chiba.ac.jp

Yosuke Morimoto

Center of ICT and Distance Education

The Open University of Japan

2-11, Wakaba, Mihama-ku, Chiba 261-8586, Japan

E-mail: morimoto@ouj.ac.jp

Yoshiaki Hada

Center of ICT and Distance Education

The Open University of Japan

2-11, Wakaba, Mihama-ku, Chiba 261-8586, Japan

E-mail: hada@ouj.ac.jp

*Corresponding author

Abstract: This paper describes the design and implementation of a flexible
architecture that is capable of extending the functions of a learner-adaptive self-
learning environment. A “courseware object”, which is a program module that
is used to implement various educational functionalities, has been newly
introduced to ensure both function extensibility as well as content reusability. A
prototype system was designed and implemented to investigate the feasibility
of the proposed architecture and to identify the core behavior and interaction
schema of courseware objects. The results from this trial indicated that several
learner-adaptive functionalities including the SCORM 2004 standard
specifications will be able to be successfully implemented into the proposed
architecture.

Keywords: e-learning technology standardization, learner adaptation, platform
architecture, courseware object, SCORM 2004.

Biographical notes: Kiyoshi Nakabayashi is currently a professor at the Chiba
Institute of Technology in Japan. After receiving his M.Sc. from the Tokyo
Institute of Technology in 1982, he entered the Electrical Communications
Laboratory of Nippon Telegraph and Telephone Corp. where he has been
engaged in research and development on parallel processing, character
recognition systems, and network-based learning-support systems. He received
his Ph.D in Human Science from Waseda University in 2006. His research
interests include the design of learning support systems, especially their system
architectures and related standardization of e-learning technology.

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 247

Yosuke Morimoto is an associate professor at the Open University of Japan. He
graduated and received his Ph.D. in Engineering from Tokyo Institute of
Technology in 2005. He has specialized in educational technologies. He is
currently mainly engaged in designing and developing retrieval/sharing systems
for learning content.

Yoshiaki Hada is currently an associate professor at the Open University of
Japan. He received his B.Eng., M.Eng. and Ph.D in Information Science from
the University of Tokushima, Japan, in 1998, 2000, and 2003, respectively. He
was a Research Fellow of the Japan Society of Promotion of Science from 2002
to 2004. His research focuses on the design of mobile/ubiquitous learning
environments, especially their system architecture.

1. Introduction

It is widely known that the interoperability and reusability of learning content is a critical
issue that needs to be addressed to provide high-quality e-learning services with rich
learning experiences. Enormous amounts of effort have been expended to confront this
issue by establishing and disseminating e-learning content specifications (Fallon &
Brown, 2003; Nakabayashi, 2004) including the Aviation Industry CBT Committee
(AICC) Computer Managed Instruction (CMI) specifications (Aviation Industry CBT
Committee, 2004), the Advanced Distributed Learning (ADL) Sharable Content Object
Reference Model (SCORM) (Advanced Distributed Learning, 2006), and the IMS Global
Learning Consortium Common Cartridge (CC) (IMS Global Learning Consortium, 2008).
Some of these attempts have successfully achieved interoperability between e-learning
content and learning-management systems (Kazi, 2004; Nakabayashi et al., 2006;
Nakabayashi et al., 2007; Shih et al., 2005; Yang et al., 2004). On the other hand, learner-
adaptive techniques have been regarded as an effective means of enhancing learning
experience by providing suitable learning content and resources that match the learner’s
current status. There have been numerous proposals and studies on learner-adaptive
techniques (Fletcher 1975; Murray, Blessing & Ainsworth, 2003; Wenger, 1987) that
have been based on the traditional overlay model (Carr & Goldstein; 1977) and the bug
model (Brown & Burton, 1978) as well as a Web-based training system (Nakabayashi et
al., 1995), sophisticated adaptive hypermedia (Brusilovsky, 2003; De Bra & Ruiter,
2001), and a system using domain ontology (Sosnovsky et al., 2007).

However, little consideration has been given to interoperability and reusability of
content in the field of learner-adaptive systems. Most existing learner-adaptive systems
have usually been designed to implement a certain single learner-adaptive strategy
without any consideration being given to support multiple learner-adaptive strategies or
even to extend a single implemented strategy. Without such a framework for extending
functions, it would be difficult to add new functions that could improve the effectiveness
of learning. This is because newly added functions may conflict with those towards
executing existing learning content by leading to a damage of the reliable behavior of this
content. In addition, it would take too long for standardization organizations to authorize
extensions of functions to existing standard specifications. It is thus very difficult to
achieve both content-system interoperability and system-function extensibility in
conventional learner-adaptive systems.

To overcome this problem, the authors have proposed a new learning-system
architecture that aims at achieving the goals of both extending learner-adaptive functions

 248 Nakabayashi, K., Morimoto, Y., & Hada, Y.

and making learning content interoperable (Nakabayashi, Morimoto & Hada, 2008;
Nakabayashi, Morimoto & Hada, 2009). To achieve this goal, the proposed architecture
introduces the concept of a “courseware object”, which is a program module that is used
to implement various educational functionalities. This architecture allows for the
incremental extensions of functions by adding new courseware objects. Since the existing
functions are not affected, this ensures that existing content will always work properly.
Following these earlier investigations, the authors designed and implemented a prototype
system to investigate the feasibility of the proposed architecture and to identify the core
behavior and interaction schema of courseware objects. The results from a trial showed
that several learner-adaptive functionalities including the SCORM 2004 standard
specifications and their extensions could be successfully implemented on the proposed
architecture.

2. Issues with Conventional Learner-Adaptive Systems

It was common to employ a system architecture, as shown in Figure 1, that separated the
content from the platform in the past evolution of learner-adaptive systems (Nakabayashi
et al., 1996; Wenger, 1987). The content in this configuration consisted of learning
material that was specific to a particular learning subject with a particular learning goal,
and the platform implemented common learner-adaptive functionalities, which were
independent of the specific learning subject or learning goal. By separating content from
the platform, this configuration was intended to make it much easier to design learner-
adaptive content. This was because the designer could concentrate on creating content to
fulfill the learning objectives or goals without having to worry about how to implement
learner-adaptive functionalities in detail.

Platform

Content

1

Content

2

Content

3

Content

4

Req.1 Req.2 Req.3 Req.4
Requirements

Learning Subject, Goal

Content

Learning Material,

Structure, Ordering

Platform

Content Execution,

Learner Adaptation,

Presentation, Tracking Difficult to extend for new

functionality

Content with new
functionality
Content with new
functionality

Figure 1. Configuration for conventional learner-adaptive system

The drawback to this configuration was the lack of a framework for extending
functions. Once the platform was designed and implemented, it was difficult to extend it
by adding new functionalities because the existing learning content that had been
designed before the platform was extended may not work properly on the extended
system. Moreover, these extensions needed to be authorized as new standard
specifications to achieve system interoperability, but this authorization process took a
long time. It was also necessary to update existing platforms to meet the new

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 249

specifications, which was also a time-consuming process. Thus, it was almost impossible
to make both the system interoperable with content and extend its functions in
conventional learner-adaptive systems. A representative standard with specifications for
learner-adaptive systems, SCORM 2004, employed the same configuration and resulted
in a lack of function extensibility.

3. The Proposed Architecture

To overcome the problems described in the previous section, the authors propose a new
learner-adaptive system architecture that is capable of both function extensibility and
system interoperability (Nakabayashi, Morimoto & Hada, 2008; Nakabayashi, Morimoto
& Hada, 2009). To accomplish this, the proposed architecture introduces the concept of a
“courseware object”, which is a program module used to implement various educational
functionalities such as learner adaptation to choose the most suitable learning material for
the learner, material presentation to tailor the way the learning material is presented, and
learner tracking to record the status of the learner’s progress, i.e., functions usually
embedded in the platform in a conventional configuration. For example, the courseware
object can implement simple linear, branch, and remedial sequencing taking into account
the test results, or much more sophisticated strategies such as scenario-based sequencing
using a state-transition machine.

As shown in Figure 2, in the proposed architecture, the courseware object is
clearly separated from the platform. It is possible to incrementally extend functions with
this configuration by adding new courseware objects. Since this addition does not affect
functions previously implemented with existing courseware objects, existing content
always works properly. Moreover, courseware objects can be distributed with content,
thus enabling existing platforms to be immediately updated for newly developed
functionalities. This eliminates the long time lags that result from conducting standard
authorization processes and installing platform updates.

Content

1

Content

2

Content

3

Content

4

Obj.A Obj.B

Obj.C Obj.D Obj.E

Obj.F

Obj.G

Platform

Requirements

Learning Subject, Goal

Content

Learning Material,

Structure, Ordering

Combination of

Courseware Objects

Courseware Object

Learner Adaptation,

Presentation, Tracking

Platform

Runtime Coordination

for Courseware Objects
New functions can be added later and

distributed as an object.

Existing functions will not be affected

Req.1 Req.2 Req.3 Req.4
Content with new
functionality
Content with new
functionality

Figure 2. Configuration of the proposed learner-adaptive system

 250 Nakabayashi, K., Morimoto, Y., & Hada, Y.

Similar to the conventional configuration, the content consists of learning
materials specific to a particular learning subject in this architecture. In addition, the
content has a link to the courseware objects used to implement the learner-adaptive
behavior that the content designer requires. The content designer may reuse existing
courseware objects to implement his/her new content, or may ask an IT engineer to
develop new ones if there is none suitable to meet his/her purpose for content design. The
courseware objects may be delivered and reused with the content to allow for both system
interoperability with content and functions extensibility.

The role of the platform is completely different from that in the conventional
configuration. Instead of implementing a particular learner-adaptive behavior, the
platform coordinates the communication between courseware objects. When the learner
launches the content, the platform reads it and instantiates the required courseware
objects. When the learner interacts with the system, the platform forwards the
information from the learner to the proper courseware objects to carry out certain learner-
adaptive behaviors.

4. Design Issues with the Proposed Architecture

To achieve the goal of the proposed architecture, courseware objects developed by
various designers with various timing should be combined to work together. To meet
these requirements, it is necessary to define some standards or make agreements on a
communication scheme between courseware objects, the information courseware objects
manage and update, and the responsibility of courseware objects.

To investigate these issues, the authors designed the system based on the
following principles and assumptions. Firstly, it was assumed that the content was
structured hierarchically or like a tree. This is because content with a hierarchical
structure is widely adopted in learning materials by various standards including AICC
CMI (Aviation Industry CBT Committee, 2004), ADL SCORM (Advanced Distributed
Learning, 2006), and IMS CC (IMS Global Learning Consortium, 2008) as well as
various proprietary LMSs. It should also be noted that there is a potential reusability on
the sub-tree basis.

Courseware Obj.

Sequencing Obj.

Platform

Content (Manifest file) A

Screen

Info.

Objective A

Objective B

UI Obj.

U2
U3

Content (Manifest file) B

Screen

Info.

Objective A

Objective B

I2+L1

I4+L3

U2
U1 U4

I3+L2

I6+L3

I5+L3

I1+L1
I1+L1 I1+L1

I3+L2

I5+L3

U4U1U3 U3

I6+L3 I4+L3 I4+L3

I2+L1

Figure 3. Configuration of the proposed system treating hierarchical content

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 251

Secondly, it was assumed that courseware objects were assigned to each
hierarchical node of content as outlined in Figure 3. A courseware object assigned to a
content node is responsible for managing the learner-adaptation behavior of the sub-tree
under the assigned node. In particular, according to the pedagogical strategy implemented
in it, the courseware object sequences its child nodes by taking into account of their
learner progress information. This makes it possible to implement different pedagogical
strategies in different sub-trees. It was also assumed that the communication between
courseware objects was limited only between parents and children. Based on this
assumption, the authors attempted to define the required communication patterns between
courseware objects and what interface courseware objects should provide for other
courseware objects.

5. Implementation of the Prototype System

Based on the design principles discussed in the previous section, the authors implemented
several learner-adaptive functions to further investigate the feasibility of the proposed
architecture and to identify the core behavior and interaction scheme of courseware
objects. One of the functions implemented was a subset of SCORM 2004 behaviors
including:

 Continue, previous, choice, start, suspend and resume navigation requests,
 Default rollup behavior,
 Skip precondition rule, and
 Retry, continue and previous post condition rules.

Another function implemented was a sequencing function based on the state-
transition machine. The following sections give details on the implementation of the
prototype system.

5.1. Communication patterns between courseware objects

Four communication patterns have been identified through implementation of SCORM
2004 functions.

 Command execution
 Rollup
 Post condition rule evaluation
 Command list generation

5.1.1. Command execution

In SCORM 2004, the learner interacts with the system using navigation commands such
as “continue” (meaning move to the next page) or “choice” (meaning jump to the
specified page). In the command-processing schema that has been designed, the
command from the learner is sent to the current object, or the courseware object
associated with the content page currently presented to the learner, to deal with the
command. If the object cannot process the command, then it forwards, or escalates, the
command to its parent object in the content tree. The parent also tries to deal with the
command, then it escalates the command to its parent object if it cannot process it. This is
repeated until it encounters a parent node capable of dealing with the command.

 252 Nakabayashi, K., Morimoto, Y., & Hada, Y.

NEXT Command

No candidate

Escalate cmd.

Select candidate

by CO’s sequencing

strategy

Next Content

Select candidate

by CO’s sequencing

strategy

No candidate

Escalate cmd.

Figure 4. Communication schema for command execution

Figure 4 illustrates the process to execute the command. First of all, the current
object receives the command. It then escalates the command to its parent to select the
candidate next page from its children. If the parent cannot find a suitable child, then it
escalates the command to the grandparent. The grandparent makes its children select a
suitable node from their children. This recursive behavior is repeated until a suitable
candidate for the next page is found. This results in a behavior that gradually expands the
search space for the candidate in the content tree from the local (the smallest sub-tree
containing the current object) to the global (the entire content tree). The identified node
for the next page will be presented to the learner, and its associated courseware object
will be the new current object.

To implement the SCORM 2004 specifications, the control modes, limit
conditions, and precondition rules that affect the selection of the candidate child node are
evaluated when the parent node selects the candidate child. It needs to be noted that the
criteria or the strategy for selecting the child node may differ from object-to-object
allowing different learner-adaptation functionalities to be implemented in different nodes
of the single content tree.

5.1.2. Rollup

To update the learner-progress status associated with each tree node, rollup from the
current object to the root node is conducted before a command is executed. During the
rollup process, the courseware object assigned to each tree node updates its learner-
progress status from the learner-progress status of its child nodes. Although this is similar
to the rollup behavior in SCORM 2004, all courseware objects may implement their own
rollup criteria.

5.1.3. Evaluation of the post-condition rules

To implement the SCORM 2004 specifications, the post-condition rules associated with
each tree node, which may result in the command changing to another, are evaluated after
rollup and before a command is executed. This process is similar to the evaluation
behavior of post-condition rules in SCORM 2004; however, again all courseware objects
may implement their own rule-evaluation criteria.

5.1.4. Generation of the command list

Since a courseware object may have its own unique commands, and since a command
from a learner will be escalated from the current object toward the root node of the
content tree until a certain node that can handle the command is encountered, commands

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 253

defined in each courseware object from the current object to the root node are collected
as a list of commands that is presented to the learner. This command list is generated
after the previous command has been executed.

5.1.5. Courseware object for learning objectives

In addition to the tree nodes, the SCORM 2004 content structure may have learning
objectives, which can be created independently from the tree structure. A learning
objective is an entity to hold the learner’s success status as global information. In the
prototype system, a learning objective is implemented as a kind of a courseware object.
The learner’s success status information is stored from a tree node courseware object to
learning objective courseware object. The stored success status information may be read
later by the other tree node courseware objects.

5.2. Evaluation of the implementation of SCORM 2004

Table 1 outlines the current status of the SCORM 2004 functions implemented with the
SCORM 2004 courseware objects of the prototype system. Almost all the main functions
of the SCORM 2004 specifications have been implemented. Functions not implemented
in the prototype system include references to additional objectives other than primary
objectives in the sequencing rules, rollup conditions and rollup controls, and delivery
controls. These functions not available in the prototype system can rather easily be
implemented later not by modifying the communication schema described above but by
modifying the SCORM 2004 courseware objects themselves. For example, complicated
rollup conditions and rollup controls can be implemented within the SCORM 2004
courseware objects by adding a mechanism to interpret the condition part of the rollup
rules and rollup controls in addition to the default rollup behavior that has already been
implemented. This does not require any modifications to the communication schema for
the rollup behavior described above. The same discussion can be applied to references to
the additional objectives in the sequencing rules and delivery controls. The former can be
implemented by enhancing the rule-condition interpretation logic of the SCORM 2004
courseware objects, which is currently only capable of handling primary objectives. The
latter can be achieved by adding a function to check delivery control flags in the SCORM
2004 courseware objects for leaf nodes.

The prototype system was evaluated with several types of sample content to check
if the communication schema for the prototype system could correctly implement the
basic SCORM 2004 sequencing functions. The most complicated sample content is given
in Figure 5 with the test procedure in Table 2. Behavior of handling the post-condition
rule was evaluated in Step 5, where the retry rule of node 12 was activated so that
traversal from node 123 to node 121 took place despite the continue navigation command.
The behavior of the command execution schema described in Subsection 5.1.1 is
highlighted in Steps 6, 8, 10 and Step 11. The leaf nodes receiving navigation commands
such as continue or previous escalate the navigation command to their parents in these
steps. Each parent tries to find the candidate node in its descendants. If there are no
proper candidates, the parent again escalates the navigation command to its parent. This
behavior works correctly in the operation steps above, resulting successful traversal
beyond the sub-trees. This indicates that the communication schema for the prototype
system can be used to mimic the behavior of the original SCORM 2004 specifications
described with the complicated procedural pseudo code.

 254 Nakabayashi, K., Morimoto, Y., & Hada, Y.

Table 1. SCORM 2004 functions implemented in the prototype system

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 255

Root

1

1211 13

122121 123

2

2221 23

222221 223

3

3231 33

322321 323

Obj2Obj1 Obj3

: Flow=True, Exit if completed, Retry if not satisfied

: Skip if satisfied

: Flow=True

Figure 5. SCORM 2004 sample content

Table 2. Test procedure for SCORM 2004 sample content

Step Operation Expected
Destination

1 Start 11

2 Continue 121

3 Set Satisfied = False, Set Completed = True, Continue 122

4 Set Completed = True, Continue 123

5 Set Completed = True, Continue 121

6 Set Satisfied = True, Set Completed = True, Continue 21

7 Continue 221

8 Set Satisfied = True, Continue 31

9 Continue 321

10 Set Satisfied = True, Previous 221

11 Continue 321

 256 Nakabayashi, K., Morimoto, Y., & Hada, Y.

5.3. The state-transition machine

Within the framework of communication patterns described in Subsection 5.1, a
pedagogical strategy based on the state-transition machine has been implemented. In
particular, a courseware object holds the following state-transition table defined in the
content definition (manifest file):

{C0, (E00, A00), (E01, A01),…}, {C1, (E10, A10), (E11, A11),… },…,{Cn, (En0, An0),… }

According to this table, the courseware object performs action Aij if event Eij is received
from child Ci. Here, an action is usually a navigation command such as continue or
choice, thus it is possible to design simulation-type content consisting of a state-transition
scenario such as “if learner inputs certain event at child0 then transits to child1”. A state-
transition table may be assigned to any tree nodes making it possible to construct a
hierarchically cascaded state-transition table. One can also extend the state-transition
table to take into account the learner-progress status. It should be noted that this new
pedagogical strategy can be implemented without having to modify the framework of
communication patterns described in Subsection 5.1.

6. Further Issues

There are several open issues related to the design and implementation of the proposed
architecture. Short-term issues are to confirm the feasibility of implementing full
SCORM 2004 functions and other commonly required easy-to-understand functions such
as “hint” or “remedial”. Assuring interoperability with existing SCORM 2004 content as
well as installing functionalities that are familiar to content designers are important steps
towards the dissemination of the proposed architecture. Other issues include extending
the manifest-file format defining the courseware structure. It is necessary to extend the
current SCORM 2004 manifest-file format so that it is capable of assigning a courseware
object to each content node.

It is also important to consider the programming and execution environment. The
environment to implement the proposed architecture must have capabilities to deal with
courseware objects, especially dynamic combinations of courseware objects at run time.
A naive implementation is placing an execution environment in a learning management
system (LMS) constructed by using a certain object-oriented language. In this case, the
communication schema described in the previous section will be implemented as the
method call of an object. However, since the abstract communication schema between
courseware objects is standardized, it is not necessary to place these objects in one LMS.
For example, a courseware object can be implemented as a Web service on a separate
server. If there are courseware objects implementing large-scale simulations or adaptive
testing (Wainer, 2000) with huge item pools placed on an external Web server, these
courseware objects can be reused as parts of various learning content. In this case, the
communication schema between the courseware objects will be implemented using a
Web-service protocol. Another interesting possibility would be to implement courseware
objects as widgets. A widget is a small application module running on a client terminal
communicating with the Web server. It can easily be implemented with a widely used
script language such as JavaScript. Developer’s Toolkits are also helpful for
implementing widgets equipped with certain learner-adaptive functionalities associated
with a specific user interface.

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 257

In addition to the above, the framework should be discussed to deal with a
common vocabulary for commands, learner progress status, and events to generalize
communication between courseware objects. It will also be necessary to consider content-
authoring environments in the future using courseware objects and a repository of
courseware objects.

7. Conclusion

The authors discussed the design and implementation of a flexible learner-adaptive
architecture that is capable of extending functions. By introducing the concept of a
“courseware object”, which is a program module that implements various educational
functionalities, the proposed architecture is capable of incrementally extending functions
while maintaining the existing functionalities. A trial implementation was carried out to
investigate the basic behavior and communication schema of courseware objects that
implemented the basic functions of SCORM 2004 and other learner-adaptive functions.
Future work includes further investigations into communication schemata between
courseware objects, manifest file extensions, and execution environments.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research by Kakenhi
(20500820).

References

1 Aviation Industry CBT Committee (2004). CMI Guidelines for Interoperability
Revision 4.0.

2 Advanced Distributed Learning (2006). Shareable Content Object Reference Model
SCORM® 2004 3rd Edition.

3 Brown, J. S. & Burton, R. R. (1978). Diagnostic Models for Procedural Bugs in
Basic Mathematical Skills. Cognitive Science, 2(2), 155-191.

4 Brusilovsky, B. (2003). Developing Adaptive Educational Hypermedia System. In
Murray, T., Blessing, S., & Ainsworth, S. (Ed.), Authoring Tools for Advanced
Technology Learning Environments (pp. 337-409). Dordrecht: Kluwer Academic
Publishers.

5 Carr, B. & Goldstein, I. P. (1977). Overlays: A Theory of Modeling for Computer-
Aided Instruction. AI Lab Memo 406 (Logo Memo 40). Massachusetts Institute of
Technology, Cambridge, MA.

6 De Bra, P. & Ruiter, J.-P. (2001). AHA! Adaptive Hypermedia for All. Proceedings
of the World Conference of the WWW and Internet 2001, pp. 262-268. Association
for the Advancement of Computing in Education.

7 Fallon, C. & Brown, S. (2003). e-Learning Standards. Boca Raton: St. Lucie Press.

8 Fletcher, J. D. (1975). Modeling of Learner in Computer-based Instruction. Journal
of Computer-based Instruction, 1, 118-126.

 258 Nakabayashi, K., Morimoto, Y., & Hada, Y.

9 IMS Global Learning Consortium (2008). IMS Common Cartridge Profile Version
1.0 Public Draft Specification.

10 Kazi, S. (2004). A Conceptual Framework for Web-based Intelligent Learning
Environments using SCORM 2004. Proceedings of the IEEE International
Conference on Advanced Learning Technologies 2004, pp. 12-15. IEEE Computer
Society.

11 Murray, T., Blessing, S., & Ainsworth, S. (Ed.). (2003). Authoring Tools for
Advanced Technology Learning Environments. Dordrecht: Kluwer Academic
Publishers.

12 Nakabayashi, K. (2004). e-Learning Technology Standardization – Make It
Converge!!–. Proceedings of the International Conference on Computers in
Education 2004, pp. 33-39. Asia-Pacific Society for Computers in Education.

13 Nakabayashi, K., Maruyama, M., Koike, Y., Fukuhara, Y., & Nakamura, Y. (1996).
An Intelligent Tutoring System on the WWW Supporting Interactive Simulation
Environment with a Multimedia Viewer Control Mechanism. Proceedings of
WebNet 96.

14 Nakabayashi, K., Hoshide, T., Hosokawa, M., Kawakami, T., & Sato, K. (2007).
Design and Implementation of a Mobile Learning Environment as an Extension of
SCORM 2004 Specifications. Proceedings of the IEEE International Conference on
Advanced Learning Technologies 2007, pp. 369-373. IEEE Computer Society.

15 Nakabayashi, K., Koike, Y., Maruyama, M., Touhei, H., Ishiuchi, S., & Fukuhara,
Y. (1995). A Distributed Intelligent-CAI System on the World Wide Web. In Proc.
of the International Conference on Computers in Education 1995, pp. 214-221.
Asia-Pacific Society for Computers in Education.

16 Nakabayashi, K., Nakamura, A., Kosaka, Y., & Nagaoka, K. (2006). Design and
Implementation of SCORM 2004 Execution Engine and Its Performance Evaluation.
In Proc. of the 2006 International Conference on SCORM 2004, pp. 31-35.

17 Nakabayashi, K., Morimoto, Y., & Hada, Y. (2008). Investigation into Object
Oriented Architecture for Extensible Learner-Adaptive Environment. Supplemental
Proceedings of the 16th Intentional Conference on Computers in Education 2008,
pp. 161-165. Asia-Pacific Society for Computers in Education.

18 Nakabayashi, K., Morimoto, Y., & Hada, Y. (2009). Design of Object Oriented
Architecture for Extensible Learner-Adaptive Environment. Proceedings of World
Conference on Educational Multimedia, Hypermedia & Telecommunications 2009,
pp.431-438. Association for the Advancement of Computing in Education.

19 Shih, T. K., Lin, N. H., Chang, W., Wang, T., Wen, H., & Yang, J. (2005). The
Hard SCORM: Reading SCORM Courseware on Hardcopy Textbooks. Proceedings
of the IEEE International Conference on Advanced Learning Technologies 2005,
pp. 812-816. IEEE Computer Society.

20 Sosnovsky, S., Dolog, P., Henze, N., Brusilovsky, P., & Nejdl, W. (2007).
Translation of Overlay Models of Student Knowledge for Relative Domains Based
on Domain Ontology Mapping. Proceedings of the 13th Int. Conf. Artificial
Intelligence in Education, pp. 289-296. IOS Press.

21 Wainer, H. (2000). Computerized Adaptive Testing: A Primer. Philadelphia, PA:
Lawrence Erlbaum Assoc. Inc.

 Knowledge Management & E-Learning: An International Journal, Vol.2, No.3. 259

22 Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge. San Francisco, CA:
Morgan Kaufmann.

23 Yang, J., Chiu, C., Tsai C., & Wu T. (2004). Visualized Online Simple Sequencing
Authoring Tool for SCORM-compliant Content Package. Proceedings of the IEEE
International Conference on Advanced Learning Technologies 2004, pp. 609-613.
IEEE Computer Society.

