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Abstract: Research shows that using computer-aided mapping tools improves 
critical thinking skills, but prior research provides limited evidence to show 
how the use of specific critical thinking skills increases map quality. This 
qualitative study observed 4 experts and 5 novices use a computer-aided 
mapping tool to construct argument maps. The analysis of video recordings 
with think-aloud protocols and retrospective interviews revealed the use of a 
five-step argument mapping process (read claims, position conclusion, position 
claims, link claims, revise links) with the experts using a more sequential 
application of the five-step process and producing more accurate maps than 
novices. The novices showed the tendency to position and link claims as a joint 
action, making map revision more cumbersome. The experts exhibited the 
tendency to work backward from conclusion to claim while the novices 
exhibited the reverse tendency. This study’s findings identify processes that 
differentiate experts from novices and validate specific thinking skills that can 
be used to improve map quality, and how these processes can be 
operationalized in terms of discrete mapping behaviors performed on screen 
that can be mined and analyzed in mapping tools to assess and diagnose 
students’ mapping skills. 
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1. Introduction 

Critical thinking is an essential skill in higher education and professional work, but 
research shows that many college students fail to develop critical thinking skills and 
effectively use the skills (Davies, 2011). A large proportion is not able to distinguish fact 
from opinion, objectively analyze two conflicting viewpoints, and analyze problems to 
determine underlying causes without influence from appeals to emotion (Roksa & Arum, 
2011), distinguish claims from reasons stated to support a claim, cannot select correct 
reasons to support their claims (Larson, Britt, & Larson, 2004), identify structural flaws 
in arguments, and correctly distinguishing claims that are versus are not backed by 
warrants (Larson, Britt, & Kurby, 2009). 

To address these deficiencies, argument analysis is being used to teach critical 
thinking across disciplines because argumentation is essential in the scientific and 
problem-solving process (Cottrell, 2017; Davies, Barnett, & van Gelder, 2019). 
Argument analysis is a process of evaluating evidence, drawing appropriate conclusions, 
distinguishing arguments from non-arguments, and finding assumptions, identifying the 
functional roles and hierarchical relationships between propositions, and evaluating the 
truth-value of claims in relation to its minor claims (Toulmin, 1958). Difficulties arise 
when premises are not explicitly stated, requiring one to infer missing premises to 
establish their inter-relationships (Ennis, 1982). Altogether, argument analysis is a 
complex process (Weinerth, Koenig, Brunner, & Martin, 2014) that requires high levels 
of attention, memory, and cognitive effort (Harrell, 2007; van Bruggen, Kirschner, & 
Jochems, 2002). 

Because argument analysis is a highly complex process and requires much 
cognitive effort, mapping tools have been used to help students construct maps to identify 
and map out the relationships between premises and claims (van den Braak, Oostendorp, 
Prakken, & Vreeswijk, 2006), and in the process of doing this, help students develop a 
deeper understanding of learned concepts in terms of how they are applied to solving a 
program (Wu, Wang, Kirschner, & Spector, 2018). Tools like Argument Mapper (Wright, 
Sheffield, & Santosa, 2017), AVIZE (Green, Branon, & Roosje, 2019) and Rationale 
(van Gelder, 2007) enable students to position and link nodes to visually map out 
complex hierarchical relationships between premises and claims, while dual mapping 
environments (Chen, Wang, Dede, & Grotzer, 2021; Wu & Wang, 2012) enable students 
to create and link concepts in an adjacent concept map to specific premises, claims, tasks, 
or events presented in an argument or “reasoning” map. Analyzing complex arguments 
with diagrams reduces cognitive load (Correia & Aguiar, 2014) and allocates more 
working memory to interpret text, identify functional elements (claims, supports, 
objections, counterarguments, etc.), and test hierarchical relationships (Harrell, 2007; van 
Bruggen, Kirschner, & Jochems, 2002) – all of which are higher-order cognitive skills 
(Aguiar & Correia, 2017). Furthermore, tools like REASON (ThinkReliability, 2007) 
prescribe the use of backward as a goal-driven approach to diagramming arguments 
(Sharma, Tiwari, & Kelkar, 2012) whereas Betty Brain steps students through the 
breadth-first process to help students create better maps (Biswas, Segedy, & 
Bunchongchit, 2016). 

In general, studies show that using mapping tools improves learning with 
moderate to large effect sizes (Schroeder, Nesbit, Anguiano, & Adesope, 2017) and 
improves students’ critical thinking skills (Eftekhari, Sotoudehnama, & Marandi, 2016; 
van Gelder, 2015). Students must apply more complex cognitive processes (combined 
comprehension, construction and interpretation) when constructing maps as opposed to 
simply studying a given map (Easterday, Aleven, & Scheines, 2007). This explains in 
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part why college students’ use of argument mapping software has been found to improve 
their critical thinking skills (van Bruggen, Boshuizen, & Kirschner, 2003; Harrell, 2011; 
Twardy, 2004; van Gelder, 2007). Even so, students often feel overwhelmed and lose 
motivation while constructing maps (Beitz, 1998; Kinchin, 2001). To address this 
problem, introductions to mapping tools are often accompanied with instruction on 
specific thinking strategies to manage the complexity of the tasks. These strategies 
include directing students to place the goal at the top (Eppler, 2006), sorting before 
linking nodes (Aguiar & Correia, 2017), sorting nodes by level of generality (Cañas, 
Reiska, & Möllits, 2017), positioning nodes with reading flow (Aguiar & Correia, 2017; 
Jeong & Lee, 2012), using five whys, backward chaining and depth-first method (Al-
Ajlan, 2015; Chen, Li, & Shady, 2010), and using a breadth-first process to review maps 
(Biswas, Segedy, & Bunchongchit, 2016). 

However, prior research has yet to fully identify and measure the extent students 
use particular strategies while constructing maps (Wang, 2019) and to what extent does 
the use of specific strategies produce higher quality maps (Schroeder, Nesbit, Anguiano, 
& Adesope, 2017). Prior research focus primarily on evaluating the effects of using 
computer-based mapping tools on map quality (Cañas, Novak, & Reiska, 2015) and 
students’ higher-order skills (Cañas, Reiska, & Möllits, 2017) without measuring and 
identifying the precise strategies students used to construct their maps. Among the studies 
that compare mapping tool techniques and interventions, these studies do not isolate the 
specific components within the intervention nor map the components to specific thinking 
processes to determine the effects of the thinking process on map quality. One study 
compared thinking processes used by experts versus novices to construct causal diagrams, 
but this study focused only on identify errors in reasoning as students interpreted their 
diagrams (Easterday et al., 2009). This gap in our current understanding of the link 
between thinking processes and map quality help explain the high variance consistently 
observed in map quality regardless of the efficacy of an instructional intervention (van 
den Braak et al., 2006). This research gap can be blamed in part on the difficulties of 
operationally defining and measuring specific processes used to construct maps and the 
difficulties in assessing the finer-grain qualities of maps associated with the use of 
specific skills or strategies. As a result, research is needed to validate and establish the 
relationship between the use of specific skills and map quality (Kuhn & Udell, 2003). 

To address this problem, this qualitative study identifies and compares the 
processes that participants with high versus low prior knowledge of argument analysis 
used to construct argument maps and examines how the observed processes are linked to 
map quality. At the same time, this study identifies which and to what extent the thinking 
processes and strategies used by the participants (internal mental processes) are tied to 
discrete map construction behaviors (external and observable processes) that can be 
mined and analyzed in computer-aided mapping tools to automate the identification, 
verification, and assessment of the reasoning skills learned and used by students to 
construct their maps. 

1.1.  Research on reasoning strategies and constructing maps 

At this time, empirical research on reasoning and map construction strategies and their 
effects on map quality is very limited (Cañas, Reiska, & Möllits, 2017; Schroeder et al., 
2017). Some of the strategies that can be used to construct maps are strategies used in 
problem solving, or more specifically, strategies for constructing explanations on how 
ideas or events are logically or causally connected. One such strategy is the depth-first 
process when linking A to B and linking B to C are performed back-to-back (or linking B 
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to C and then linking A to B) to produce the chain A--> B --> C. This process is best 
suited for diagnosing and identifying root causes to problems (Chen et al., 2010; Serrat, 
2017; Terjesen & Patel, 2017). In contrast, the breadth-first process takes place when 
linking A to C and linking B to C are performed back-to-back to identify two claims that 
directly support C. This strategy is prescribed as the process of choice when working top-
down from a given goal (Sharma, Tiwari, & Kelkar, 2012). Because depth-first places 
less demand on memory than breadth-first based on machine learning research (Al-Ajlan, 
2015), depth-first and backward processing can be used in conjunction when given a 
clear outcome (Sharma, Tiwari, & Kelkar, 2012). 

The depth-first strategy can be implemented by using backward processing, when 
analysis starts with the outcome or conclusion, then works backward to find supporting 
facts or claims (Sharma, Tiwari, & Kelkar, 2012) - a process also useful for diagnosing 
tasks (Al-Ajlan, 2015). The depth-first strategy can also be implemented by using 
forward processing as a data-driven approach for predicting possible outcomes through 
the iterative application of logic rules to given facts (Hinkelmann, 2004) - a process well 
suited for analyzing tasks with no distinct goals such as planning, designing, and 
monitoring process (Sharma, Tiwari, & Kelkar, 2012). When faced with unfamiliar 
problems, people tend to use forward processing by default to evaluate arguments (Heit, 
2007; Oaksford & Hahn, 2007) because making predictions is a process that can instill a 
higher sense of confidence and judgment (Sweller, Clark, & Kirschner, 2011; Tversky & 
Kahneman, 1980). 

At this time, three studies are known to have operationalized, measured, and 
examined to what extent students’ use of these thinking strategies correlates with map 
quality. One qualitative study revealed that the group producing the most accurate causal 
map used more backward than forward processing (Lee, 2012). Less accurate maps 
produced by the other two groups exhibited no clear tendency to use one process over the 
other. Shin and Jeong’s (2021) qualitative analysis found that the students that 
constructed better causal maps (when given a specific outcome) showed the tendency to 
use more backward than forward processing (high backward/forward ratio) and more 
breadth-first than depth-first processing (high breadth/depth ratio). Students’ prior 
knowledge of the content of the causal maps was not found to be associated with which 
processes they used. Finally, Jeong (2020) analyzed the movements and placements of 
nodes captured in trace data recorded by a computer-aided mapping tool to also find that 
students who use a higher ratio of backward to forward processing, and a higher ratio of 
using depth-first to breadth-first processing constructed better maps. 

These preliminary studies, however, provide only correlational data to illustrate 
how students’ use of specific strategies help them to construct higher quality maps. The 
data used in the Jeong (2020) study to infer what strategies students were using was 
limited to and based only on the computer-based mapping actions (e.g., place node 
immediately below vs to the right of the previously moved node) students performed 
while constructing their maps. No verbal protocol data was collected to validate the 
inferred link between a specific mapping action and the use of a specific strategy. 
Furthermore, what strategies that are used to construct maps may be influenced by one’s 
prior knowledge of maps given that Körner (2005) found that students with low prior 
knowledge of hierarchical maps were less able to comprehend maps. To fully identify 
and validate the strategies that are being used to improve map quality, the aim of this 
study was to identify, measure, and compare the extent to which specific strategies are 
used to construct argument maps between experts and novices with high versus low prior 
knowledge with argument analysis and diagrams. 
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1.2.  Research questions 

The purpose of this qualitative study was to identify and compare the processes and 
strategies participants with high versus low prior knowledge of argument analysis used to 
construct argument maps and to examine which processes are used to produce higher 
quality maps. The second purpose of this study was to identify which and to what extent 
the observed strategies (internal processes) are tied to specific mapping behaviors that are 
external, observable, and can be mined in mapping tools to automate the identification 
and assessment of students’ reasoning skills. As a result, the research questions addressed 
in this study were the following: 

1. What thinking processes are used by experts and novices with and without prior 
experience with argument analysis, respectively, to construct an argument map? 

2. How do the processes and strategies used by experts to create higher quality 
maps differ from those used by the novices? 

3. To what extent do the discrete mapping actions performed on screen denote 
specific cognitive acts and thinking processes used to construct argument maps? 

2. Method 

2.1.  Participants 

The participants were recruited from a large university in the U.S. southeast region. 
Based on Nielsen’s (1994) recommendation that a sample size of 4 ±1 is sufficient for 
exploratory studies using think-aloud protocols, five experts and five novices were 
recruited for this study. A survey invitation was distributed via email and class visits with 
faculty and graduate students across multiple departments across campus to recruit 
participants. The survey requested the following information: age, gender, student or 
instructor, instructor’s field of expertise, number of years teaching, and prior knowledge 
of six established e-learning design principles (Clark, 2002) that served as the main 
content of the argument mapping task, and prior experience using argument mapping 
software. Using a purposeful and convenience sampling from the pool of volunteers, the 
five experts were selected on the basis that they teach or have taught courses on 
argumentation and/or have had prior training on argument analysis. The novices were 
selected from volunteers who were graduate students that had little or no formal training 
in argument analysis. 

All five experts (5 males; 42, 32, 52, 54, and 29 years in age) teach courses on 
argumentation with argument diagrams and/or formal reasoning (one from Criminal 
Justice, four in Philosophy) with 8, 24, 2, 25, and 2 years of teaching experience. Four of 
the experts taught courses on argumentation (one taught only formal reasoning), three 
had prior experience mapping arguments, none had prior experience using computer-
based mapping tools, and none had prior knowledge of the e-learning design principles. 
The five novices (1 male, 4 females; 24, 26, 24, 24, and 54 years in age) were graduate 
students in Career Counseling, Mental Health Counseling, Information Science, 
Information Science, and Education. One novice had a prior course on argumentation, 
two had familiarity with 1 and 2 of the e-learning principles, and none had prior 
experience with mapping arguments and argument mapping tools. 
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2.2.  Argument mapping task 

Each participant was presented a 2-minute video on how to use the computer-aided 
mapping tool, jMAP, to move nodes, insert and delete arrows to link nodes, re-route 
arrows to point to a different node, and change arrow color (black for supporting premise, 
red for opposing premise). Next, the participants completed a 10-minute practice exercise 
to construct a mini argument map consisting of five nodes (claims about the importance 
of critical thinking in college students) while talking aloud to familiarize themselves with 
the talk-aloud protocol. With the auto-link feature disabled in jMAP, participants did not 
have to link nodes when moved into position - making the nodes easier to reposition, sort, 
and re-sort nodes in and out of groups while exploring their inter-relationships. This 
process in particular, when used to complete jigsaw puzzles, has been found to facilitate 
exploration and simplifies the problem space to reduce cognitive load and improve 
performance (Antle, 2013). 

Next, participants were presented with a printed copy of a 1017-word summary 
description of six e-learning principles (including graphic illustrations) and their impact 
on learning from an article extracted from Clark (2002). The average reading times were 
5 minutes 9 seconds and 4 minutes 25 seconds for the experts and novices, respectively. 
Participants were then presented with jMAP populated with 14 claims and one conclusion 
(Fig. 1) drawn from the presented summary with one claim added as a distractor item. 
Participants were instructed to construct an argument map to reveal the logical structure 
between the claims and the conclusion. Each participant talked out loud to report their 
thoughts while performing the task. As the researcher observed the participant perform 
the mapping task, the researcher reminded participants to talk out loud when needed and 
aided the participants only when participants experienced technical difficulties with the 
software. The verbal reports and actions performed on screen were recorded using a 
video screen-capture program and all on-screen mapping actions were logged in the 
jMAP application. The novices and experts spent an average of 21 minutes (min = 6:41, 
max = 32:29) and 26 minutes (min = 18:17, max = 34:10), respectively, to complete the 
argument map. 

2.3.  Retrospective interview session 

After completing the map, each participant started the one-on-one interview session by 
responding to an open-ended question about the argument mapping process and 
experience. The participants were able to refer to their argument map on screen to help 
answer questions and recall the process they used to construct the map. When participants 
described a particular process, they were probed for more details and retrospective 
descriptions of the specific actions they performed (and the reasons behind the action) to 
identify the relationships between claims. They were also probed to explain any 
difficulties they experienced while trying to identify the relationships, and to share any 
thoughts that they may have filtered out and did not verbalize during the mapping task. 

2.4.  Data analysis overview 

Altogether, the data collected in this study consisted of the argument maps and map 
scores, mapping actions logged in jMAP, video recordings of each participant’s jMAP 
screen with think-aloud protocols, and retrospective interviews. The data from one expert 
(who taught formal reasoning, did not teach argumentation, and had no prior experience 
mapping arguments and using mapping software) was omitted because the expert 
exhibited high levels of frustration and discomfort, asked frequent questions about the 
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mapping software, and required frequent assistance from the researcher during the 
mapping task. Using data from the remaining 4 experts and the 5 novices, the data 
analysis was conducted in the following sequence. 

 

Fig. 1. jMAP screen at the start of the argument mapping task 

The argument maps were evaluated and scored by the jMAP software against a 
criterion argument map. The retrospective interviews were then reviewed to qualitatively 
identify both global and atomistic processes that the participants reportedly used to 
construct their maps. The global processes identified from the retrospective interviews 
were listed in a table to reveal the componential tasks and task sequences used to 
complete a map. The more atomistic processes (including the map scores) were instead 
placed into a matrix (process X participants) to help reveal possible differences between 
groups. 

Next, the verbal protocols and the mapping actions revealed in the screen 
recordings were transcribed and entered directly into each participant’s jMAP log 
archived in a spreadsheet so that each entry was listed alongside any coinciding mapping 
actions (move node, location of moved node, link node, relink node, delete link, set link 
attribute) recorded, and time stamped in the jMAP log. The verbal protocols were parsed 
into units of meaning and coded within each participant’s spreadsheet to identify 
behavioral patterns that connotate specific thinking processes. The codes were then used 
to locate verbal excerpts from the spreadsheet to verify and illustrate specific processes 
identified from the retrospective interviews. The log data was not analyzed in this study, 
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but it will be analyzed in a separate study where algorithms will be developed to process 
the log data in a way that accurately identifies and measures the thinking processes 
identified and validated in this current study. 

2.5.  Scoring argument maps 

The maps were scored with the jMAP software using a criterion map (Fig. 2) produced 
by a professor who teaches courses on multimedia design and conducts research on 
argumentation and assessed across five criteria (Table 1). Given that the linkages inserted 
into an argument map reflects the student’s logical understanding between claims and 
premises (Chen et al., 2021), one point was awarded for correctly identifying the main 
conclusion or hypothesis, one point for correctly identifying each relationship between 
claim and hypothesis, and one point for identifying each relationship between two claims. 
To measure and place more weight on students’ depth of analysis or the extent to which 
students are able to infer and articulate the logical pathways connecting root claims (or 
assumptions) to the main conclusion (Suthers & Hundhausen, 2003; Jeong, 2020), one 
point was also awarded for: a) identifying the lowest level or root claims (claims with no 
child claims); b) linking two chained claims branching from each root claim (R→A→B); 
c) linking three consecutive claims branching from the root claims(R→A→B→C); and d) 
linking four consecutive claims branching from the root claims (R→A→B→C→D). In 
this study, the links students used to connect claims were directional links identified with 
an arrowhead to graphically convey what would be a link label with the text “supports” 
or “enables” or “verifies”. As a result, 0.5 point was deducted for inserting arrows 
pointing in the wrong direction, and 0.5 point was deducted for each arrow with an 
incorrect valence (positive or negative). Given that the hypothesis and claims were all 
provided in advance at the start of the argument mapping task, the argument diagrams 
were not scored on the number of claims identified in the map (Van Drie et al., 2005), the 
relevance and correctness of the claims (Janssen et al., 2010), and on their sufficiency 
and completeness (Chen et al., 2021). The map scores varied widely, ranging from 5.5 to 
31 points, with all experts scoring higher than the novices. 

 

 

Fig. 2. Criterion map used to score participants’ argument maps 
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Table 1 
Participants' argument map scores sorted from highest to lowest score 

 

Correctly 
identified the 

main 
conclusion 

# of root 
claims 

correctly 
identified 

# of correct 
1st order 

chain 

# of correct 
2nd order 

chain 

# of correct 
3rd order 

chain 

# of correct 
4th order 

chain 

Total 
score 

Max score 1 8 10 10 10 10 49 

Expert 3 1 8 7 5 5 5 31 

Expert 4 1 8 5 4 4 4 26 

Expert 1 1 7 5 5 1 0 19 

Expert 2 1 8 5 2 0 0 16 

Novice 1 0 6 4 4 0 0 14 

Novice 3 1 7 1 1 1 0 11 

Novice 5 1 7 (5*) 2 (1*) 1 1 0 9 

Novice 2 1 5 1 0 0 0 7 

Novice 4 0 3 3 (1*) 0 0 0 5.5 

Note. * Links incorrectly identified in direction and/or valence resulting in a 0.5 point deduction 

2.6.  Coding retrospective interviews and verbal protocols to identify processes 

After reviewing the retrospective interviews and identifying the processes the participants 
used to construct their maps, the grounded theory approach (Guba & Lincoln, 1994) was 
used to identify the categories for coding the verbal protocols emerged through iterative 
examination of the video recordings of a randomly selected novice and expert. All codes 
were entered into the participant’s spreadsheet alongside the current entries, mapping 
actions, and time stamps. New categories were added to the coding scheme when new 
actions could not be assigned to an existing category. Once the draft coding scheme was 
completed, a second coder was trained to code the videos of the selected expert and 
novice using the initial coding scheme. Inter-rater reliability between the second coder 
and the researcher was tested, disagreements were addressed, and further revisions were 
made to the coding scheme to resolve the disagreements. Using the revised and final 
coding scheme, the two coders coded the videos of another novice and another expert. 
The Cohen’s kappa inter-rater reliability (Cohen, 1960) for coding the novice and expert 
data was .78 and .97, respectively, indicating substantial agreement between raters. The 
remaining videos were coded by the researcher using the final coding scheme. 

A thematic analysis was performed on the qualitative data collected from the 
interviews and verbal protocols to identify verbal-cognitive actions performed during the 
mapping process. Thematic analysis is a method used in qualitative studies to identify 
meaningful patterns and themes in rich complex data in relation to the research question 
(Braun & Clarke, 2006). Using an inductive approach, this study started by noting verbal-
cognitive actions during data analysis and continued until all exclusive actions were 
identified. The entire data set and coded extracts were constantly and iteratively re-
examined to obtain emergent actions, generate categories of actions, and identify and 
relate categories to subcategories, while using the broadest categories to generate possible 
themes and refining the themes to integrate all coded data. After creating the initial 
coding scheme, a second coder was trained and applied the coding scheme to code the 



   

 

   

   

 

   

   

 

   

   134 A. Jeong & H. Y. Kim (2022)    
 

    

 

 

   

   

  

   

   

 

   

       
 

video recordings and protocols from one expert and one novice. The codes were 
compared between the researcher and second coder, and all discrepancies were discussed 
and resolved with revisions and improvements made to the coding scheme. The process 
of coding and comparing the codes on the video protocols of another expert and another 
novice was repeated until a high inter-rater reliability Cohen’s Kappa score was achieved. 
Commonalities and differences noted between the codes determined the final list of 
verbal-cognitive actions presented in the final coding scheme. 

The analysis revealed actions to show, for example, that the participant to varying 
degrees used breadth-first and depth-first processes, with depth-first processes performed 
with backward and forward chaining process as documented in prior studies (Lee, 2012, 
Shin & Jeong, 2021; Jeong, 2020). Identifying and counting the number of times experts 
and novices used the breadth-first, depth-first, backward, and forward process relied on 
observing the location of the moved claim relative to the location of the most recently 
moved claim. For example, depth-first processing occurs when A, B, and C are linked or 
placed in a sequence to produce the ABC chain by performing forward processing two 
times in succession by placing B after A, then placing C after B, or by performing 
backward processing two times in succession by placing B before C, then placing A 
before B. In contrast, breadth-first processing occurs when A is moved to the left of C 
using backward processing to produce A → C and then D is moved to the left of C using 
backward processing to produce D → C to create two stems branching from C. Breadth-
first processing can also occur when C is placed to the right of A using forward 
processing to produce A → C and then D is placed to the immediate left of C using 
backward processing to produce D → C to again create two stems branching from C. 

2.7.  Identifying differences between expert vs. novice processes 

Qualitative differences in the processes used by the experts and novices were determined 
by entering the coded behaviors (including map scores) exhibited by each expert and 
novice into a participant X pattern matrix. Frequency counts of specific behaviors were 
added to the matrix for making global comparisons that might discern possible 
differences in the processes used by experts versus novices. The resulting matrix 
provided a summary report to first reveal any notable similarities exhibited by the experts 
as a group and any similarities exhibited by the novices as a group. The matrix was then 
used to determine which similar behaviors exhibited among the experts were unique to 
only the experts and were not overall exhibited by the novices, and vice versa. 

3. Discussion of main findings 

This section starts with the presentation of the findings (research question 1) on the 
processes used by experts and novices to construct their argument maps, beginning with a 
description of global processes (or main steps in the mapping process) followed with 
descriptions of more local processes observed within each mapping step. Immediately 
following the description of specific processes are discussions of observed differences in 
the extent to which the specific cognitive acts and/or processes (defined by specific 
sequences of cognitive acts) were exhibited by the experts relative to the novices 
(research question 2). This discussion then moves on to the presentation of the findings 
(research question 3) revealing the extent to which the identified processes and cognitive 
acts can be denoted by discrete mapping behaviors performed on the mapping screen. 
Discussion of the instructional implications and directions for future research are 
presented to conclude the section. 
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3.1.  The process used by experts and novices to map arguments 

The analysis of both the retrospective interview and video recordings of the verbal 
protocols revealed that the experts and novices constructed their maps using an array of 
actions (some performed using specific strategies) that can be classified into five main 
steps: 1) scan all claims, 2) identify and place conclusion, 3) move and position claims, 4) 
link related claims, 5) review & correct links between claims. Table 2 summarizes the 
five main steps illustrated with quotations from the verbal reports and interviews and 
presented with some of the strategies used to perform a given step. All five of these steps 
mirror the 5-step process for constructing good concept maps prescribed by (Aguiar & 
Correia, 2017). 

Table 2 
Five main steps with associated strategies used to construct the argument maps 

Steps Indicators from verbal reports & interviews 

(1) Scan 
claims 

“So first I'll just read all my claims on the side” 

“So, I'm just going to read through all of these reasonings and see where 
I'll begin, how I'll form the map. So I'm just going to read them out loud.” 
(novice) 

SCAN ALL CLAIMS before moving claims: Participant reads aloud 
every claim presented on initial screen. 

(2) Identify 
& place 
conclusion 

"I think generally, what I always try to do is find whatever I take to be the 
ultimate conclusion first.” 

“All right, okay I'm just thinking - okay yeah that's - that'll be main one, 
main point.”  

PLACE CONCLUSION FIRST: (after reading all the claims) “Okay, so 
I’m looking for a conclusion, that was, the general use of multimedia 
increases learning, for students (placed the conclusion first at top).” 

DIRECTIONAL FLOW: Placing the conclusion at top, bottom, right, or 
left (not center of screen) so that chains of premises flow top-down, left-
to-right, or right-to-left, respectively. 

(3) Position 
claims 

SORT-FIRST PROCESS: “As I was reading all the reasons, I noticed 
various similarities. So we're excluding text, we're excluding gratuitous 
visuals, we're excluding gratuitous sounds. I knew that all of those would 
typically go up towards the top and then go to support something about 
decreasing load on some sort of memory, so that helped me at least get 
that structure set…. I think that I tried to not put any links in until I felt 
fairly confident that I wanted them there.” 

BACKWARD PROCESS: “All right, okay I'm just thinking--that'll be 
main one, main point…I'm going to begin making a map. I'm going to 
pick number 11, use of multimedia increases learning. I'm going to bring 
this over to the section and I'm going to...Okay, let's see. Helps encode 
into long term memory. I think that definitely relates to-- That's a good 
reason to have to use multimedia in e-learning…I'm going to add the 
arrow to connect to use of multimedia increases learning.”  

FORWARD PROCESS: “Decrease load on visual working memory, .. 
Exclude gratuitous visual… Ah.. Personalized communication. I’m 
thinking … maybe there are corresponding ones to these. I’m thinking 
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maybe there are corresponding ones to these. So then, Decrease load on 
auditory working memory. Yeah, Okay. Then, Decrease load on working 
visual memory. That’s up here”. 

DEPTH-FIRST PROCESS: Back-to-back use of backward process or 
forward process that link three claims into a single chain A → B → C. 

BREADTH-FIRST PROCESS: “I'm trying to figure out... what other 
examples I can attach to main point, use of multimedia increases 
learning… I'm going to take this one, exclude gratuitous text…So I'm 
going to add the arrow to this one and connect [to main conclusion]”. 

(4) Link 
claims 

“I'm going to add the arrow to connect to use of multimedia increases 
learning.” “So, we'll hook that up there.” 

“I feel like that's...obviously that's a negative one. Yeah. It's like, I'm 
going to add a red arrow to that because negative.” 

LINK CLAIM & CHECK CHAIN: Review the whole chain when adding 
a claim to the chain. “Removing word for word narration, exclude 
gratuitous sounds will decrease load on auditory working memory… 
umm.. All those things are gonna help reduce overall cognitive load that 
students have to deal with…ah…it should help encode into long-term 
memory.” 

(5) Review 
& revise 
links 

RECOGNIZE ERROR: “Use of multimedia increases learning. Increase 
selective attention. Add async audio narration and animated 
demonstration with reading text. Okay actually I think this one, increase 
selective attention. How do I-- oh that's right just delete the arrow.” 

BACKWARD PROCESS to review map, “The techniques-the things to 
do to help encode into long-term memory include personalized 
communication with the use of pedagogical agents and one technique for 
doing that would be to add audio narration and animated demonstration.” 

FORWARD PROCESS to review map, “Add sync audio narration and 
animated demonstration with reading text, excluding gratuitous visuals 
and excluding gratuitous texts will decrease the load on the working 
visual memory, reduce the cognitive load and encode into long term 
memory.” 

DEPTH-FIRST CHAIN: Review chain of reasoning with backward 
process 

BREADTH-FIRST PROCESS: “You use multimedia to help encode into 
long-term memory and reduce overall cognitive load.” 

 

Table 3 shows that some steps (scan claims, revise links) were entirely or almost 
entirely skipped by one or more participants, and that some occurred later (not earlier) in 
the process (place conclusion). Steps 3, 4 and 5 were performed iteratively (position 
claims, link claims, revise links), consistent with what Cañas, Reiska, and Möllits (2017) 
found and described as the process of “reflective thinking”. Which of the iterative 
processes distinguish high from low performers was determined by sequentially 
analyzing mapping actions (actions recorded in the jMAP logs) to produce the 
transitional state diagrams in Fig. 3. The state diagrams, ordered from participants with 
the lowest to highest map scores, present the relative frequency of action sequences 
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performed by each participant and the relative frequencies that occurred at higher-than-
expected frequencies based on z-score tests at p < .01. 

Table 3 
Main steps and strategies with performance measures from logged data and video 
analysis 

 Novices  Experts 

Main Steps & Strategies 1 2 3 4 5  1 2 3 4 

Argument map score 14 7 11 5.5 9  19 16 31 26 

Step 1) Scan all claims √  √  √  √ √ √ √ 

Scan minutes (M = 1.35) .88 .3 2.8 .65 1.1   1.7 2.5 1.7 .5 

Step 2) Place conclusion na 1 √ √ √ √  √ √ √ √ 

   #Times conclusion moved 2 5 2 2 12  4 4 11 4 

Map format.     Bottom Center Top Top Top   Top Right Right Bottom 

Step 3) Position claims √ √ 2 √ √ √  √ √ √ √ 

#Times claim is moved (M = 6.8) 12.4 5.3 6.3 2.9 6.8  4.7 5.8 8.1 9.1 

#Claims positioned prior step 2 1 4 0 12 0  1 3 1 3 

   Backward processing 5 0 27 7 0  17 27 40 0 

   Forward processing 26 0 0 5 15  2 0 0 25 

    31 0 27 12 15  19 27 40 25 

   Depth-first 3 0 0 0 0  2 0 0 8 

   Breath-first 17 0 13 3 13  13 25 31 16 

 20 0 13 3 13  15 25 31 24 

#Moved claims prior to step 4 4 4 5 12 61   18 62 24 13 

Step 4) Link claims √ √ √ √ √  √ √ √ √ 

Frequency (M = 28.4) 45 35 20 18 31  18 13 49 27 

Total links (15 in criterion map)  15 15 14 17 19  14 13 18 14 

Change link attributes 3 7 1 0 6   0 6 2 2 

Step 5) Revise links √ √ √ √ √  √ √ √ √ 

#Links inserted prior 4 9 5 4 1  5 1 12 7 

Frequency   31 24 11 11 20  5 2 35 5 

#Links added after revision 9 2 2 10 8   1 12 2 5 

Note. 1 Never identified the conclusion and placed conclusion at bottom of map as a premise;     
              2 None of the strategies apply because all claims were linked directly to the conclusion. 

The state diagrams show that 7 of the 9 participants exhibited the tendency to 
perform steps 3 and 4 (move nodes → add links) in an iterative process. The two 
participants that did not exhibit this tendency were experts 1 and 2 (with map scores 
higher than all the novices). Both used the sort-first strategy by moving a large number of 
claims to their desired location before linking the claims. Secondly, novice 1 and 3 
iteratively revised links and moved nodes (suggesting that they did not use the sort-first 
strategy) when no such tendency was exhibited among the four experts (all with higher 
map scores). The state diagrams also show how the experts overall exhibit a higher 
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tendency to use a more structured process than the novices - working between moving-
conclusion and moving-nodes, moving-nodes and adding-links, and then following 
adding-links with revising-links. These findings demonstrate that the mapping actions 
mined by the mapping tool can be used to determine the extent to which students 
construct their maps using a specific process. 

 

Note. Thickness of arrow conveys relative strength of transitional probability; black arrows identify 
probabilities that are significantly greater than expected by chance alone based on z-score tests at p 
< .01 (Bakeman & Gottman, 1997); size of glow emanating from node conveys relative number of 

times the action was performed. 

Fig. 3. Sequential patterns in participants’ mapping steps ordered from low to high 
scorers 

Step 1 Scan claims 

Analysis of the think-aloud protocols of participants performing step 1 revealed 7 of the 9 
participants using the scan-first strategy - scanning and reading all claims (averaging 6.58 
seconds per claim) before placing a claim in the map. The remaining participants (two 
novices with the lowest map scores) started positioning claims before scanning all the 
claims at 18 to 39 seconds into the mapping task. The mapping tool by itself was unable 
to determine which participants scanned all claims because no events occur on computer 
screen to indicate the act of reading a claim. Possible behavioral indicators could be 
generated by presenting and magnifying the text in each claim when mousing over a 
claim, tracking mouse cursor movements when the cursor is used to point to each claim 
as it is being read, and measuring the time elapsed between the time claims are first 
presented and the time at which a claim is moved. 

Step 2 Identify and place conclusion 

After scanning claims, two experts and three novices used the place-conclusion-first 
strategy by proceeding (after moving just one or less claims) to place the conclusion into 
the map. The remaining participants (which included the lowest scoring expert and two 
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lowest scoring novices) moved 3 to 12 claims before placing the conclusion. Furthermore, 
state diagrams in show (Fig. 3) that all four experts exhibited the tendency to place the 
conclusion and then move claims (move conclusion → move claims) or vice versa at 
higher-than-expected frequencies. This suggests that all four experts tried to coordinate 
the placement of the claims in relation to the conclusion. In contrast, only novice 1 (the 
novice with the highest map scores) exhibited this behavioral pattern. These findings 
suggest that identifying and placing the conclusion prior to moving claims and/or 
coordinating movements between conclusion and claims produces better maps. It 
produces better maps because argument analysis is a goal-directed task that requires 
sustained focus on goals while searching for ways to link claims to conclusions (Sharma, 
Tiwari, & Kelkar, 2012). 

The observations also reveal that where the conclusion is placed determines to 
what extent claims are placed with directional flow or “reading flow” (Aguiar & Correia, 
2017). Causal maps with more flow (e.g., more links pointing up than down in a top-
down map) have been found to correctly identify more root causes (nodes located at the 
tail ends of each stem) than maps with less flow (Jeong & Lee, 2012). In this study, the 
novice with the second lowest score placed the conclusion in mid-screen to produce a 
hub-and-spoke diagram with no flow - when claims radiate out in all directions from the 
conclusion resulting in nearly equal numbers of arrows pointing left vs. right and down 
vs. up. Although hub-and-spoke maps are said to be easier to create, they are more 
disorienting and require more mental effort to process (Amadieu, Van Gog, Paas, Tricot, 
& Mariné, 2009). In contrast, two experts in this study (one with the highest map score) 
placed the conclusion to the far right to create left-to-right flow, making linked claims 
easier to read and review (Derbentseva & Kwantes, 2014). The mapping tool records 
each claim’s x-y coordinates and can count the number of links pointing up, down, left, 
and right. But at this time, it cannot identify map orientation to use the counts to measure 
flow. To do this, the tool will need to track where claims are placed in relation to the 
conclusion with flow in hub-and-spoke maps, for example, measured in terms of the 
number of links pointing toward vs. away from the conclusion. 

Step 3 Move claims 

Sort-first strategy. The process of moving claims was associated with four strategies - 
sort-first, backward, forward, and breadth-first processing. The experts used the sort-first 
strategy more than the novices to sort claims based on similarities in degree of similarity 
and generality, as prescribed by Cañas, Reiska, and Möllits (2017, p. 354), while linking 
few if any claims prior to placing all the claims into their positions. Three novices 
inserted links after moving 4, 4, 5, and 12 claims - less than the number of claims moved 
by any of the experts. The state diagrams (Fig. 4) of mapping actions aggregated across 
all experts vs. all novices confirms this finding. They show that the experts altogether 
were more likely than the novices to: a) move claims one after another (.87 vs. .77, 
respectively) while at the same time, were less likely to follow moving a claim by adding 
a link; b) add one link after another (.46 vs. 31, respectively) once experts began the 
process of adding links; and c) revise one link after another (.64 vs .43, respectively) with 
experts making fewer number of revisions to links (M = 11.75) than novices (M = 19.4). 
After revising a link(s), the experts were less likely than the novices to go back to moving 
claims (.20 vs. .36, respectively. 

The sort-first strategy produces better maps because it is analogous to sorting 
jigsaw puzzle pieces prior to piecing them together, simplifying the problem space and 
making pieces easier to find once needed (Antle, 2013). Placing claims in close proximity 
increases the number of attempts to find possible links between claims just as eye 
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movement data show that students make significantly more saccades between and more 
attempts to integrate text and diagrams placed in proximity (Johnson & Mayer, 2012). 
Furthermore, structural changes can be made without the cumbersome process of undoing 
links and relinking claims as they are slid up and down a chain or moved from branch to 
branch. This can help prevent users from entrenching themselves behind their initial 
maps and/or producing an incomplete map (novice 4 left three isolated clusters of 
claims). Overall, these findings demonstrate that the mined mapping actions can be used 
to gauge use of the sort-first strategy. 

 

Note. Values displayed in each step = average number of times the step was 

performed per participant. 

Fig. 4. Sequential patterns in mapping actions between all experts versus all novices 

Backward-over-forward processing strategy. Video analysis revealed that the 
experts used proportionately more backward than forward processing than the novices. 
Even with the differences in number of experts (n = 4) and novices (n = 5), the 
backwards process was used to position claims 84 and 39 times by the experts and 
novices, respectively, whereas the forward process was used 27 vs. 46 times by the 
experts and novices. This finding is consistent with studies that show how more use of 
backward than forward processing produces better causal maps (Lee, 2012; Shin & Jeong, 
2021). One reason as to why the novices in this study showed the tendency to used 
proportionately more forward processing is that people tend to use forward processing by 
default to evaluate arguments when faced with unfamiliar problems (Heit, 2007; 
Oaksford & Hahn, 2007) – in this case, people with no prior training in analyzing 
arguments. The relationship between group and approach was statistically significant, 
χ2(1, N = 196) = 18.28, p < .001. 

Modifications to the mapping tool can be made to enable it to assess where a 
newly moved node is placed in relation to the most recently moved node to determine 
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whether a student is using backward processing (places node below node in top-down 
map) or forward processing (places node above node in top-down map). To take map 
format into account (e.g., spoke-and-hub, top-down map), the mapping tool must also 
determine the relative position of the most recently moved node in relation to the location 
of the conclusion. In contrast, backward processing in a left-to-right map is indicated by 
the act of moving a node placed to the left of the most recently moved node which itself 
is placed to the immediate left of the conclusion. 

Breadth-over-depth-first strategy. The experts and novices exhibited a tendency 
to use breadth-first processing to link claims. The video analysis revealed that each expert 
and novice used breadth-first processing to position claims an average of 21.25 and 9.2 
times, respectively. In contrast, each expert and novice used depth-first processing an 
average of 10 and 3 times. The relationship between group and process used was not 
statistically significant, χ2(1, N = 144) = .321, p < .571. Considering that the criterion 
map can be completed using breadth-first versus depth-first processing 8 versus 5 times 
at minimum, the numbers still show both experts and novices exhibiting the tendency to 
use more breadth-first than depth-first processing. This finding is consistent with the 
claim that breadth-first is the process of choice when working top-down from given goals 
(Sharma, Tiwari, & Kelkar, 2012). Also, the finding that experts used breadth-first 
processing more than the novices is also consistent with Shin and Jeong’s (2021) study 
which found that students producing better causal maps used proportionately more 
breadth- than depth-first processing. 

At this time, no studies provide findings to explain why breadth-first processing 
produces better maps. One possible explanation is that using the sort-first strategy (which 
may be associated with higher map scores) involves placing claims sharing the same 
level of generality side by side (in a top-down map). To test the efficacy of using breadth-
first processing with a large sample of participants, the mapping tool requires further 
development so that it can: a) perform the similar functions used to identify backward 
and forward processing (as explained above); b) test and specify the optimal range of 
angles used to determine when a node is placed to the right, left, above, and below 
another claim given the length-width dimensions of the claim; c) adjust measures in 
relation to the minimum number of breadth-first and depth-first processes required to 
complete the criterion map; and d) ignore claims movements used merely to make 
cosmetic changes - which occur more often in the latter half of the map construction 
process. 

Step 4 Link claims 

The experts and novices inserted links to connect claims an average of 26.75 and 29.8 
times, respectively (nearly double the 15 total links in the criterion map). The expert and 
novices’ final maps contained an average of 14.75 and 16 total links, respectively. These 
numbers show that both the experts and novices ultimately inserted double the number of 
links than necessary, requiring them at some point in time to delete links when errors 
were identified. Each expert and each novice changed the attributes of a link (from 
positive to negative) an average of 2.50 versus 3.40 times, respectively, while the 
criterion map contained only one link that required its valence to be changed from 
positive to negative. Overall, the findings do not reveal notable patterns that distinguish 
the experts from the novices because most of the work of identifying the relationships 
between claims is reflected in the act of positioning a claim to the left, right, above, or 
below another claim (using the strategies such as backward, forward, depth-first, and 
bread-first processing), not in the act of inserting a link between two claims. 



   

 

   

   

 

   

   

 

   

   142 A. Jeong & H. Y. Kim (2022)    
 

    

 

 

   

   

  

   

   

 

   

       
 

However, video analysis revealed that the moment after inserting a link to connect 
two claims, participants traced through and reviewed the series of claims lying upstream 
and/or downstream from the newly linked claim to assess its flow in logic. No observable 
actions performed on the computer screen could be mined and used by the mapping tool 
to quantify when and how often the participants perform this action. This action could 
potentially be detected by the mapping tool if the tool were to: a) magnify the text 
presented in each claim to induce users to mouse over each claim as they read and trace 
through linked claims (as mentioned previously); and b) record the movement of the 
mouse cursor as it is being used to coordinate and direct attention to each claim while 
tracing through the map. 

Overall, no notable differences were found between experts and novices in how 
links were added to maps. This suggests that mining and analyzing the act of linking 
claims by itself provides no process data of strategic value. However, identifying the first 
act of linking two claims immediately after the initial movement of claims is necessary to 
assess use of the sort-first strategy (as discussed above). Furthermore, strategic data can 
be obtained by enabling the mapping tool to: a) prompt users to identify a mediating 
claim X that explains why claim A supports claim B (A → X → B) each time users insert 
a link; and b) analyze inserted links to efficiently determine to what extent users are 
creating directional flow (as described above). On the flipside, the mapping tool could be 
modified to let users skip this step entirely by letting the mapping tool auto-insert links 
the moment a claim is placed adjacent to another claim, but doing so in a way that does 
not make re-positioning claims to explore tentative relationships and to make structural 
changes overly cumbersome. The mapping tool can do this by unlinking a claim B by 
simply dragging B away from its neighbouring claims and automatically relinking 
orphaned claims to change A→B→C to A→C. 

Step 5 Review and revise links 

Analysis of the mined mapping actions revealed that the expert and novice with the 
highest score within group performed the highest number of revisions to map links (35 
and 31, respectively). The expert and novice with the lowest score within group 
performed the least number of revisions (2 and 11, respectively). Hence, the correlation 
between scores and number of revised links was .82 among the experts and .53 among 
the novices. Overall, the experts performed fewer revisions to links on average (M = 
11.75) than the novices (M = 19.4). These patterns suggest that map scores improve in 
proportion to effort invested in finding and correcting errors in linked claims – a finding 
that is consistent with prior studies that find students construct better maps when they 
perform more frequent and more complex revisions to their maps (Shin & Jeong, 2021). 
The observed patterns also suggest that fewer corrections are needed and/or performed 
when users possess prior knowledge on how to analyze arguments. 

A combination of performance data on mapping actions can be used to identify 
users struggling with their maps. Table 4 shows that expert 2 (lowest scorer among the 
experts) and novice 4 (lowest scorer among the novices) moved the highest and second 
highest number of claims within their group (62 and 12, respectively) before inserting the 
first link. Also, expert 2 inserted only 1 link (fewest among the experts) prior to making 
the first revision to a link. Similarly, novice 4 inserted 4 links (tied for second fewest 
among the novices) prior to making the first revision to a link. Expert 2 then inserted 12 
more links (most among the experts) after making the last revision to a link while novice 
4 inserted 10 more links (most among the novices) after making the final revision to a 
link. The mapping tool can compute the norms on these three metrics and cross-index 
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these measures with the user’s current map score based on present links and links implied 
by position and proximity between nodes. 

Finally, video analysis revealed that backward, forward, depth-first, breadth-first 
processing was used to visually trace through linked claims to search for errors. As 
discussed above, no observable actions were performed on screen to enable the mapping 
tool to mine this behavior and to quantify when and how often participants use each 
strategy to review links. Again, these actions could potentially be detected by inducing 
users to mouse over claims to magnify and read the claims, and record cursor movements 
as users point to and trace through linked claims with the cursor. 

3.3.  Cognitive acts denoted by discrete mapping actions 

The thematic analysis of the think-aloud protocols revealed 14 verbalized-cognitive acts 
(Table 4) associated with 10 discrete mapping actions performed on the jMAP screen. 
One mapping action (move claim next to previously moved claim) served as a behavioral 
indicator for three closely similar verbal-cognitive actions: identifying level of claim 
(verbalizations with words like “over”, “below”, “under”, “up”, identifying association 
between claims (“related to”, “involves”), and identifying causal relationship between 
claims (“results in”, “helps”). The four cognitive acts that were found to have no 
corresponding mapping action to denote their presence were read/scan claims, 
interpret/comprehend a claim, review chain of reasoning, and recognize an error. 
Furthermore, the cognitive act of justifying or explaining the reason for linking two 
claims was not observed in any of the think-aloud protocols. The participants simply re-
stated that claim B is true “because of” claim A without identifying the mechanism or the 
intermediate claim that link the two claims (e.g., reduce cognitive load → improve 
information processing in working memory → increase encoding into long term memory). 
Performing this action requires deeper knowledge of learning theory, which was a 
domain outside of the participants’ area of expertise except for one expert. Furthermore, 
the participants were not prompted to explain the mechanism, were not given the option 
to insert additional claims into their maps and were not instructed to annotate the links 
with explanations. 

Of the 10 cognitive actions that were denoted by discrete mapping actions, no 
data is available to determine precisely how often students performed each of the 10 
actions covertly without exhibiting it overtly via a mapping action (e.g., finding a claim 
as opposed to placing the cursor on a claim, and contemplating the relationship of one 
claim to another claim as opposed to moving and placing the claim next to the related 
claim). However, the verbal protocol transcript revealed that the researcher prompted the 
novices to talk aloud (when the participants stopped talking after 5 seconds passed 
without talk) a total of 5 times (3 times for novice 1, and once for novices 2 and 3) and 3 
times with the experts (twice for expert 1, and once for expert 3) relative to the total of 
510 and 680 cognitive acts verbalized by the novices and experts, respectively. The 
participants’ frequent use of the cursor to point to claims as they read each claim out loud 
(82%, 83%, 43%, 39%, and 44% of all coded cognitive acts performed the novices, and 
33%, 48%, 3%, and 25% of all the coded cognitive acts performed by the experts) 
provided a good indication that most of the cognitive acts were verbalized by the 
participants as the constructed their maps. 

Overall, these findings show that the actions mined by the mapping tool can 
capture 10 of the 15 cognitive acts (or 66% a most) used to construct a map. As a result, 
the mapping action alone (without verbal reports) can be analyzed to identify the 
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cognitive acts used to produce better maps. Detecting the cognitive acts that have no 
associated mapping actions could be achieved by adding new functions to the mapping 
tool. For example, some ways to detect the process of reading claims is to: 1) gauge the 
lag time separating the previous action and following action; and 2) initially position all 
claims in a holding area, display these claims only when participants move the mouse 
cursor into the holding area, and hide the claims once the mouse cursor is moved out of 
the holding area. To detect the process of tracing and reviewing chained claims, 
magnifying the text in each claim as students’ mouse over each claim. 

Table 4 
Cognitive actions in think-aloud protocols with actions observed and mined in mapping 
tool 

Verbalized cognitive act Mapping action observed on screen 

Read claim 

Identify main conclusion 

Interpret/comprehend a claim 

Identify level of claim 

Identify association between claims 

Identify causal relationship between claims 

Identify the dependency of two claims 

Identify independency of two claims 

Identify irrelevant claim 

Identify negative association 

Make a cause-effect relationship 

Review chain of reasoning 

Recognize error in reasoning 

Correct error in reasoning 

None 

Position conclusion in the map 

None 

Move claim next to previously moved claim 

Move claim next to previously moved claim 

Move claim next to previously moved claim 

Connect arrows to node at same point 

Connect arrows to node at 2 different points 

Claim is not connected or placed to the side  

Change attribute of a link 

Insert link to connect two claims 

None 

None 

Delete link, Re-position node & Re-link 

 

3.4.  Implications for map tool design and instruction 

The purpose of this study was to identify strategies experts and novices (with and without 
prior knowledge on how to analyze arguments) used to construct better argument maps 
and to identify how mapping actions can be mined and analyzed in mapping tools to 
measure student use of the mapping processes and strategies. Through comparative 
analysis of the findings from the videos, think-aloud protocols, retrospective interviews, 
and mined mapping actions, this study validated the 5-step process for constructing maps 
as prescribed by Aguiar and Correia (2017). This study also identified several strategies 
used to perform each step and provides further validation of findings from prior studies 
that show backward processing and breadth-first processing to be associated with and 
possibly contribute to higher maps scores (Lee, 2012; Shin & Jeong, 2021). Most of all, 
this study provides numerous recommendations (as described above) on how mapping 
tools can be refined to mine and analyze on-screen behaviors to measure how students are 
using the specific strategies to complete their maps or to complete any kind of learning or 
problem-solving task that involve the process of visually and spatially organizing 
conceptual components into larger structures (e.g., visual design, root cause analysis). 
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Such refinements enable the mapping tools to be used to conduct large-scale studies to 
determine how and which strategies improve students’ map scores and reduce variance in 
students’ scores. Mapping tools can then be further modified to deliver interventions to 
support the use of proven strategies, test for alignment between intended processes and 
what students actually do, and identify new behaviors and strategies. 

Although the 5-step process and the specific strategies identified in this study 
must still be tested for predictive validity, these tentative findings provide a preliminary 
glimpse into some of the possible strategies class-room instructors can use to help 
students analyze arguments more effectively. For example, instructors can help by: 1) 
explicitly instructing students to begin the task by finding the conclusion and placing it at 
the top of the screen (not center screen); 2) providing students with a mapping tool that 
enable them to freely move and place claims on screen without having to link a claim the 
moment it is placed on screen; 3) instructing students to find claims that are similar in 
degree of generality and specificity and line up similar claims into rows below the 
conclusion; and 4) progressively position and link claims working backwards from the 
conclusion with all links pointing towards the conclusion to facilitate the process of 
reviewing and identifying errors in the way the claims are linked and chained. To help 
identify students who are struggling the most as they are constructing their maps, 
instructors can look out for students who deviate from the processes prescribed above. 
Furthermore, these very same processes and strategies can be taught and used to help 
students construct better causal maps to decompose problems and identify root causes 
and better concept maps to organize or break down semantic and hierarchical 
relationships between concepts. 

3.5.  Limitations and directions for future research 

Future studies can address some of the limitations noted below and test specific 
inferences raised in this study by doing the following: 1) develop, test, and refine 
algorithms in the mapping tool using larger data sets to produce metrics that best predict 
map scores; 2) measure each mapping action with more specificity (e.g., add correct vs. 
incorrect link) and strategy (e.g., place correctly identified conclusion at top of map) in 
reference to a criterion map that vary in structure (e.g. more depth than breadth) and 
adjust measures to take differences in map structure into consideration; 3) develop and 
test more precise ways to reveal internal cognitive processes (e.g. scanning claims) on 
screen to expand the range of behaviors that can be mined and analyzed; 4) measure, 
verify, and determine to what extent the use of each strategy and required mental effort is 
dependent on prior knowledge of argumentation analysis and prior content knowledge; 5) 
use eye tracking systems to examine how mapping with versus without auto-linking 
affects the extent to which students use, for example, the sort-first strategy (or more 
specifically, the number of eye saccades between grouped claims), the rate at which 
grouped claims are correctly vs. incorrectly linked and the resulting number of times 
students revise links; and 6) determine the minimum number of claim moves performed 
at the start of the mapping process to produce measures of breadth-first vs. depth-first 
processing that best predict map scores – measures that are not confounded by minor 
actions used to make cosmetic changes to the maps. 

4. Conclusions 

This study found that experts applied a more sequential application of a five-step process 
(scan claims, identify and place conclusion, move and position claims, link related claims, 
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review and correct links between claims) to produce more accurate argument maps than 
novices. The novices showed the tendency to position and link claims as a joint action, 
making map revision more cumbersome. The experts exhibited the tendency to work 
backward from conclusion to claim while the novices exhibited the tendency to work 
forward from claims to conclusion. The findings identify processes that differentiate 
experts from novices and identify strategies that can be potentially taught and used by 
students to improve map quality. 

Overall, this study reveals complexities and nuances in the processes of 
constructing argument maps and some of the factors to be taken into consideration when 
choosing the most effective processes. Developing mapping tools that can mine mapping 
actions and produce analytics like those demonstrated in this study may help advance and 
build on prior research aimed at identifying, measuring, modeling, and empirically testing 
strategies used to construct not only argument maps, but also concept maps and causal 
diagrams. Such research can potentially increase our understanding of what and how 
specific strategies impact student learning, understanding, and performance in problem-
solving. Operationalizing the observed strategies and embedding them into next-
generation mapping tools can potentially help students successfully analyze complex 
problem domains with better control over differences in critical thinking and reasoning 
abilities. 
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