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Abstract: Technologies such as electronic health records (EHRs), embedded 
clinical decision support systems (CDSS) and computerized physician order 
entry (CPOE) systems are at the forefront of healthcare’s technological 
revolution. These health information technologies (HIT) pose great promise to 
improve patient safety, reduce medication errors and increase operational 
efficiencies in healthcare organizations. However, despite the perceived 
benefits that these complex technologies offer, their associated risks must not 
be overlooked or disregarded (Borycki et al., 2012). The objective of this 
article is to answer the following questions: 1) What is the nature of errors 
caused by technology (i.e., technology-induced errors) and alert fatigue in 
healthcare? 2) Is there a relationship between alert fatigue and technology-
induced errors? 3) Do organizational strategies exist to address these problems 
and enhance patient safety? 4) Do technological recommendations exist to 
improve the current issues surrounding safety? To answer these questions a 
scoping review following the Arksey and O’Malley (2005) framework was 
conducted using the CINAHL®, Web of Science®, IEEE Xplore® and 
PubMed® databases. The search focused on English publications only, using 
the search terms “Alert Fatigue” and “Technology Errors.” Articles were 
iteratively assessed based on the inclusion and exclusion criteria, resulting in an 
inclusion of 36 articles in the final scoping review. Following this, a thematic 
analysis was conducted and the findings placed in a data extraction table. The 
results indicated that while HIT present a significant opportunity to streamline 
processes and reduce medication errors, there is a critical need to assess them 
from a patient safety and quality lens. Lastly, a novel conceptual tool was 
created, the Flow of Cognitive Processing Model. The model provides an 
iterative perspective and an insightful view into the cognitive realms of 
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healthcare professionals in their interactions with HIT. By illustrating the 
complexities of healthcare providers from a humanistic lens, the model could 
guide HIT design, acquisitions and implementations to reduce alert fatigue and 
mitigate the introduction of technology-induced errors. 

Keywords: Alert fatigue; Errors caused by technology; Technology-induced 
errors; Patient safety; Healthcare journey; Health informatics; User experience; 
Journey mapping; Service delivery improvement 
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1. Introduction 

Fundamental changes are occurring in the healthcare landscape and the practice of 
medicine is at a pivotal point in its transformation. Healthcare is transitioning from paper-
based means of service delivery to electronic. Technologies such as electronic health 
records (EHRs) with embedded clinical decision support systems (CDSS) and 
computerized physician order entry (CPOE) systems are at the forefront of this revolution. 
These health information technologies (HIT) pose great promise to improve patient safety, 
reduce medication errors and increase operational efficiencies in healthcare organizations. 
However, despite the perceived benefits that these complex technologies present, their 
associated risks and unintended consequences must not be overlooked or disregarded 
(Borycki et al., 2012). 
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1.1.  Technology in medicine and errors caused by technology 

Technological distractions remain an important area of concern in health informatics. In 
medicine the explosion of technology, coupled with a rapid social shift, creates an 
environment that consistently tempts healthcare workers to surf the internet, respond to e-
mails, check social media outlets (Papadakos, 2014). Due to their perceived level of risk, 
the Emergency Care Research Institute has classified alarms and smart phone distractions 
as technological hazards (Papadakos, 2014). As healthcare settings are fast paced, chaotic 
environments characterized by frequent interruptions (Skaugset et al., 2015), the 
increased reliance on siloed and disparate HIT to access health information must be 
explored. These operational complexities can introduce other forms of hazards and new 
types of errors. These new types of errors (i.e., technology-induced errors) can be defined 
as errors that arise from the design and development of technology (Borycki et al., 2012). 
Furthermore, technology-induced errors can be caused by the: implementation and 
customization of a technology, interactions between the operation of a technology, new 
work processes that evolve from a technology’s use (Borycki et al., 2012). As the clinical 
workflow encompasses both administrative and clinical tasks, all activities (e.g., 
environments, technologies, people) and organizations involved in delivering care 
(Tucker, 2019) could be impacted by technology-induced errors. 

1.2.  Cognitive load theory and alert fatigue 

As healthcare professionals adopt electronic service delivery practices through the advent 
of HIT, they are faced with many challenges. Such challenges include increased patient 
volumes, technologically imposed clinical and operational workflow disruptions. 
Technology induced workflow disruptions are often a consequence of institutionally 
imposed HIT acquisitions or implementations and can disrupt the care delivery workflow. 
Consequently, healthcare providers (e.g., physicians, nurses, caregivers, health 
technicians) must often navigate multiple HIT, to access relevant health information to 
holistically treat patients. The cognitive impacts caused by technologically imposed 
workflow disruptions, fragmented and siloed HIT must be considered within the context 
of safety. As technological advancements occur in healthcare, an increased reliance on 
HIT creates an expectation that healthcare providers use these technologies with extreme 
hypervigilance (e.g., immediately responding to every alert or notification). “Doctors and 
medical professionals have always faced interruptions from beepers and phones, and 
multitasking is simply a fact of life for many. What has changed, doctors say, especially 
younger ones, is that they face increasing pressure to interact with their devices” (Richtel, 
2011). Excessive stimuli from varied technologies are contributors to alert fatigue, which 
can be defined as the mental state that results when alerts or reminders consume too 
much time and mental energy (Wan et al., 2020). Alert fatigue can cause physicians to 
ignore or override both clinically relevant and irrelevant alerts unjustifiably (Wan et al., 
2020). Thus, from a user experience (UX) design context, these alerts may not provide 
relevant or meaningful experiences to their target audience (Levy, 2015). 

As there is a limited threshold in which an individual can absorb and respond to 
stimuli, it is important to refrain from viewing computers and medical providers in the 
same light. Although physicians and medical professionals are highly efficient and very 
capable, there are inherent cognitive limitations to information processing and human 
memory abilities. Organizations must consider health professionals’ experience of 
cognitive load (Sweller, 1988), prior to HIT design and acquisition. Sweller’s (1988) 
cognitive load theory builds on the Atkinson and Shiffrin (1968) model of human 
information processing and a combination of these theories is presented in Table 1. As 
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illustrated (Table 1), human memory is categorized into three stages: sensory or short-
term memory, working memory, long-term memory. 

Table 1 
Memory stages (Atkinson & Shiffrin, 1968; Skaugset et al., 2015; Sweller, 1988; 
Theodore, 2019) 

Memory Type Duration Capacity Encoding 

Sensory or short- term memory < 4 seconds Limited to sensory 
inputs 

Varies per sense 

Working memory < 18 seconds Limited to 7 items 
(plus or minus 2 
items) 

Auditory  

Long-term memory Unlimited Unlimited Semantic 

 

As displayed in Table 1 each memory type has a different duration, capacity and 
encoding mechanism. There are varied limitations of information processing, learning 
and the ability to recall new information (Skaugset et al., 2015) associated with each 
memory type. Short term memory is limited to sensory inputs, varies by sense and 
information is processed for a maximum duration of four seconds. Working memory is 
limited to auditory memory (e.g., sounds) and a maximum of 18 seconds. In general, 
working memory allows humans to process seven separate items of varied stimuli 
concurrently. Long term memory, the final stage in human memory processing has 
unlimited capacity, duration and semantic coding. As it associates meaning (i.e., logic) to 
memory processing and storage, long-term memory decays very little with time (The 
Human Memory, 2020). Furthermore, it is easier to recall and lasts longer than sensory 
and working memory (The Human Memory, 2020). 

The varied memory stages (Table 1), demonstrate the human limitations of 
information processing with regard to the exposure of varied stimuli. Additionally, Table 
1 illustrates that memory saturation could be the potential root cause of alert fatigue and 
technology-induced errors in a healthcare context. Therefore, in acute care settings from a 
healthcare provider perspective, alert fatigue and technology-induced errors may not be 
contingent on provider aptitude. Conversely, they may be a result of human information 
processing limitations in stressful and chaotic environments (e.g., hospitals). Furthermore, 
the overexertion of a provider’s cognitive abilities, by disruptive technologies or 
excessive alerts can create workplace environments devoid of humanity, empathy and job 
satisfaction. Therefore, it would be beneficial to contextualize healthcare service delivery 
holistically and from a journey perspective. Understanding that in addition to their illness 
or professional duties, patients and providers alike often experience several concurrent 
journeys (i.e., life events) such as: illness, grief, life stage dynamics, personal 
circumstance (Joseph et al., 2020). Tremendous benefit could be realized by visually 
identifying the pain points and intersections of the physician, patient and caregiver 
journey across the continuum of care (Joseph et al., 2020). A deep appreciation and 
understanding of individualism, human information processing capabilities could reduce 
provider burnout and improve patient outcomes (Joseph et al., 2020). Additionally, 
journey mapping activities could provide valuable insight into designing intuitive and 
complimentary HIT. The mapping activities and visualization outputs could illustrate 
healthcare complexities and delineate the intricate nuances of the varied clinical and 
operational workflows. Technologies designed in a patient and provider centric lens 
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could streamline clinical workflows, reduce healthcare costs through efficiency gains and 
improve patient safety. 

1.3.  Research objectives 

This paper will explore the following research questions: 

1. What is the nature of errors caused by technology (i.e., technology-induced 
errors) and alert fatigue in healthcare? 

2. Is there a relationship between alert fatigue and technology-induced errors?  

3. Do organizational strategies exist to address these problems and enhance patient 
safety?  

4. Do technological recommendations exist to improve the current issues 
surrounding safety? 

2. Methods 

A scoping review, following the Arksey and O’Malley (2005) framework was conducted 
in the following databases: CINAHL®, Web of Science®, IEEE Xplore®, PubMed®. 
These databases were selected to provide a fulsome analysis of the current available 
indexed literature based on the search terms “Alert Fatigue” and “Technology Errors.” 
The search included articles published in English that discussed alert fatigue and 
technology-induced errors in a healthcare context. The initial search yielded 81 articles, 
had no geographic restrictions and included all articles published prior to the year 2021. 
Each article was iteratively assessed (Fig. 1) by title and abstract based on the inclusion 
criteria. If the article met the inclusion criteria, it was read in full, the findings placed in a 
data extraction table (Table 1) and assessed thematically. 

 

Fig. 1. PRISMA diagram. Adapted from PRISMA (2015) 



   

 

   

   

 

   

   

 

   

   Knowledge Management & E-Learning, 13(4), 500–521 505    
 

 

    

 

 

   

   

 

   

   

 

   

       
 

3. Results 

As demonstrated by Fig. 1, the article review process was iterative, and the search 
yielded a total of 81 articles. In the initial assessment, 18 duplicate articles were removed, 
and 63 articles were assessed for inclusion by title and abstract. Following this, 27 
articles were removed, as they did not reference alert fatigue or technological errors in a 
healthcare context. Lastly, the full text review resulted in an inclusion of 36 articles with 
results tabulated (Table 2) and a thematic analysis conducted. 

3.1.  Themes from the literature 

Although various themes were observed in the included literature, the four prominent 
themes were: alert fatigue and the appropriateness of overriding alerts, safety issues, 
technology as a source of errors, the importance of usability and human factors 
engineering. 

3.2.  Alert fatigue and the appropriateness of overriding alerts 

Alert fatigue and the appropriateness of overriding alerts had 17 article references and 
was the most frequent theme of the literature sample. CDSS are often integrated with 
CPOE systems with the aim to improve safety by providing health professionals with 
point of care recommendations (e.g., alerts). However, many of the alerts are deemed 
clinically irrelevant contributors to alert fatigue and consequently result in system 
override rates of 77% to 90% (Wan et al., 2020). Furthermore, in the article by Wan et al. 
(2020) the authors stated that the purpose of real time alerts is to disrupt the clinical 
workflow, draw the providers attention away from their task and to the alert. Therefore, 
the intention of alert design is to prompt providers to (stop, evaluate and interpret alert 
notifications) make quick clinical decisions based on the information provided by the 
alert. However, as a result of frequent and excessive alert interruptions, medical providers 
are becoming less respectful and responsive to them (Wan et al., 2020). Similarly, 
Niazkhani et al. (2020) describe that not all CDSS are embraced by physicians and that 
alert fatigue is a serious concern. Furthermore, Shah et al. (2018) detail that “although 
smart infusion pumps are intended to prevent medication errors by alerting users about 
doses that exceed set thresholds, a large number of clinically insignificant alarms and 
alerts create the potential for alert and alarm fatigue” (Shah et al., 2018, p. 842). 
Moreover, Dexheimer and colleagues (2017) reported that despite 70% of hospitals in the 
United States of America (USA) utilizing EHRs with embedded CDSS, most alerts failed 
to support decision making. 

Khuntia and colleagues (2015) found that because of technostress, caused by an 
excessive number of warnings and alerts, nurses experienced alert fatigue and increased 
stress while providing care. According to Herasevich et al. (2013) the complexity of 
intensive care unit (ICU) settings can lead to alert fatigue. Additionally, the authors 
described that ventilated patients attached to multiple monitoring, diagnostic and 
therapeutic devices can yield an activation of up to 40 alarms at any given moment 
(Herasevich et al., 2013). Furthermore, Herasevich et al. (2013) clarified that despite their 
frequency, ICU alerts rarely resulted in meaningful clinical interventions. In a related 
article, Lo et al. (2009) examined a non-interruptive medication alert within a 
longitudinal medical record. However, despite decreasing alert fatigue through non-
interruptive alerts, their attempts did not change clinical behavior (Lo et al., 2009). Along 
these lines in an attempt to combat alert fatigue, Poly et al. (2020a) conducted the first 
study that utilized machine learning models to predict physician alert interactions. The 
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study findings revealed that the model could be utilized to identify the alert acceptance 
rate of individuals and reduce alert fatigue in clinical settings (Poly et al., 2020a). 
Zenziper Straichman et al. (2017) found that workload and scheduling greatly impacted 
the probability of alert override occurrence. The authors discovered that despite weekend 
and night shifts being associated with higher alert overrides, 88.6% of alerts were 
justified (Zenziper Straichman et al., 2017). Harrison et al. (2017) conducted a 
comparative study to establish the response rates of ICU care providers who received 
both EHR based alert and text message alerts. The researchers’ findings indicated a 
favourable preference for text-based alerts for both non-urgent and urgent notifications 
(Harrison et al., 2017). Poly et al. (2020b) discovered that the cultural acceptance and 
appropriateness of alert overrides varied per clinical setting. Furthermore, they found that 
overrides were contingent on alert type and varied by clinical service (Poly et al., 2020b). 
The findings revealed that geriatric, renal and drug-drug interactions (DDIs) alerts 
overrides were culturally deemed inappropriate (Poly et al., 2020b). Additionally, Poly 
and colleagues (2020b) identified the categorical range of institutional override variance 
as follows: drug allergy (46%-95%), DDIs (56.3%-95.6%), medication dosage (82%-
96.8%), geriatric (2.1-87.1%), renal (74.4%-97.1%). The findings of Olakotan et al. 
(2020) revealed that alerts should be complimentary and not disruptive and that a 
significant reason for alert override is the disruption to the clinical workflow. 

In an article by Bryant and colleagues (2014) the authors stated, “physicians at 
our institution are unhappy with, and increasingly jaded by, decision support features that 
were intended to provide safety” (Bryant et al., 2014, p. 806). Moreover, the authors 
emphasized that they “are the first to report a lack of improvement in decision support 
acceptance (as measured by overrides) after Meaningful Use requirements took effect” 
(Bryant et al., 2014, p. 806). The researchers surmised that DDIs alerts may be 
fundamentally flawed, as the intervention did not reduce override rates of high-risk 
medications (Bryant et al., 2014). In fact, the study revealed that CDSS alert override 
rates have not statistically declined in the last 15 years (Bryant et al., 2014). The authors 
conclude that a more fulsome assessment of how alerts are designed is required (Bryant 
et al., 2014). In consideration of excessive alerts, Simpao et al. (2015) conducted a study 
in which visual analytic software was used to develop a dashboard to facilitate safe 
reductions of alerts. The researchers iteratively customized rules from a commercial EHR 
system and incrementally deactivated clinically irrelevant alert rules to improve 
medication safety while attempting to reduce alert fatigue (Simpao et al., 2015). 

Riedmann et al. (2011) found that it is unclear how different severity alerts should 
be activated and presented to the end user in CPOE systems. Additionally, the aesthetic 
and mechanistic parameters of the alert notifications presented inconclusive findings 
(Riedmann et al., 2011). Therefore, it was unknown if specific colours, forms, screen 
position or if visual or auditory signals were more appealing to end users (Riedmann et 
al., 2011). Pohl et al. (2014) stated that depending on a patient’s medical history and care 
plan, sometimes DDIs are unavoidable and thus alerts generated by the system are 
overridden. Lastly, Drew et al. (2014) disclosed that the root cause of alert fatigue is 
multifactorial and caused by a combination of: excessive number of physiologic monitor 
device alarms, a complex interplay of inappropriate user settings, patient conditions, 
algorithmic deficiencies. Drew and colleagues (2014) stressed the importance and value 
of establishing parameters for patient specific alarm notifications. The authors detailed 
that as a result of not customizing alerts, a patient’s six day stay in the ICU resulted in an 
average of 211 alarms per hour (Drew et al., 2014). Furthermore, in one month alone, the 
number ICU alert notifications (e.g., audible, inaudible) exceeded 2,500,000 (Drew et al., 
2014). 
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3.3.  Safety issues 

Although HIT is poised to increase the safety and efficiency of healthcare processes, 
several concerns have been identified in the literature. Eight articles specifically 
addressed issues of safety in healthcare settings and among healthcare stakeholders. 
Papadakos (2014) described that “as health professionals, we are aware of the epidemic 
growth of injuries and deaths related to texting and driving. It should not surprise us that 
this distracted behavior has affected all levels of healthcare providers and has impacted 
patient care” (Papadakos, 2014, p. 1306). Moreover, the author recounted that “as human 
communication has changed from verbal face to face communication to a world 
dominated by texting, tweets, e-mails, and social media, health professionals must be 
educated to focus on patient care. Distracted doctoring has become a major patient health 
concern” (Papadakos, 2014, p.1309). Keasberry et al. (2017) found that commercially 
and locally developed eHealth technologies appear to improve healthcare outcomes and 
processes across diverse settings. However, they cautioned that since eHealth 
technologies are evolving rapidly, evidence of their relational impact on clinical 
outcomes (e.g., mortality, morbid events, unplanned readmissions) remains unclear 
(Keasberry et al., 2017). Galt and colleagues (2019) described how HIT presents new 
challenges for healthcare. The authors caution, that there are inherent risks associated 
with HIT use, which can negatively impact patient quality and safety. (Galt et al., 2019). 
Along these lines in their article, Beeler and colleagues (2014) referenced a study by Han 
et al. (2005) which suggested a correlation between a significant increase in mortality, 
following the implementation of a CPOE system. The authors acknowledged that CDSS 
with embedded CPOE hold promise to reduce human error during healthcare delivery, 
but stressed the importance of monitoring medication errors and mortality rates during 
system implementations (Beeler et al., 2014; Han et al., 2005). 

In a systematic review of prescriber education and its relationship to patient harm 
conducted by Bos et al. (2017), several barriers to effective prescribing were identified 
including: information and communication technology (ICT) shortcomings, high 
clinician workload, complex patient polypharmacy and medical conditions, lack of 
standardized processes, frequent rotations of inexperienced physicians. Comparably, 
Smith et al. (2013) clarified that abnormal test results do not always receive timely 
follow-up, even when providers are notified through EHR alerts. High workloads, alert 
fatigue and other attentional demands, can disrupt healthcare providers memory recall of 
tasks and patient care activities that may require follow up (Smith et al., 2013). The 
authors explained that such lapses in follow-up may lead to delays in the diagnosis and 
treatment of diseases such as cancer (Smith et al., 2013). Ranji and colleagues (2014) 
cautioned how the implementation of CPOE combined with CDSS, fundamentally 
changes the clinical workflow and can create new safety issues. Conversely, Ranji et al. 
(2014) described that despite the potential introduction of new safety issues and risks 
associated with using such systems, their potential ability to reduce prescribing errors 
remains significant. Moreover, CDSS with embedded CPOE systems can ensure that 
orders are legible, standardized and complete when written (Ranji et al., 2014). The 
findings by Otero et al. (2016) described the benefits and essential nature of HIT when 
cost, safety, quality and equity are considered in the broader context of healthcare. 
However, they also noted that unintended consequences associate with technology 
implementations, can affect the quality and safety of patient care (Otero et al., 2016). 
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3.4.  Technology as a source of errors 

Technology has an endless potential to improve healthcare outcomes and increase 
operational efficiencies in healthcare settings. However, along with the promised benefits 
new forms of risk and errors are often introduced (Borycki, 2013; Borycki & Kushniruk, 
2017; Carvalho et al., 2009). Six articles highlighted the impacts that technology-induced 
errors can present in healthcare. The research published by Gold and colleagues (2015) 
described that when compared to traditional paper charting practices, EHRs can create 
errors in differing ways. Farley et al. (2013) explained that prominent areas of concern 
include the variance in HIT functionality and design in hospital settings. Furthermore, 
prescribing errors and patient harm can be caused by a combination of HIT with poor 
data displays and end users with alert fatigue (Farley et al., 2013). Légat et al. (2018) 
described that the availability of structured and accurate health information is difficult to 
find in EHRs. Their findings also revealed that most providers lack adequate EHR 
training and consequently are often unaware how to locate or document DDIs (Légat et 
al., 2018). Ni and colleagues (2018) highlighted that medication errors remain prominent 
in healthcare, despite modernization initiatives and the introduction of state-of-the-art 
HIT such as: EHRs, CPOE embedded systems, bar code medication administration 
systems, smart infusion pumps. Dilsizian and Siegel (2013) described how artificial 
intelligence (AI) promises improvement and opportunities for technological advancement 
in healthcare. However, the authors cautioned that AI initiatives can often be stifled by 
medicolegal and regulatory challenges (Dilsizian & Siegel, 2013). Lastly, Levick et al. 
(2013) evaluated the development of a CDSS alert intervention, designed to reduce the 
necessity of a diagnostic laboratory test. Their results indicated that the intervention 
reduced inappropriate orders by 21% and saved the organization $92,000 per year 
(Levick et al., 2013). 

3.5.  The importance of usability and human factors engineering 

Usability engineering and human factors engineering are often viewed symbiotically in 
health informatics. Usability engineering can be defined as a discipline that provides 
structured methods for achieving usability in user interface design and during product 
development (Mayhew,1999). Usability from an end user context (e.g., healthcare 
provider) can be defined broadly as the capacity of a system to allow users to carry out 
their desired tasks enjoyably, safely and efficiently (Kushniruk & Patel, 2004). Whereas 
human factors engineering, is a discipline concerned with the design of systems, tools 
and machines. Human factors perspectives take into consideration human characteristics, 
capabilities and limitations (Gosbee, 2002). The importance of considering usability and 
human factors engineering in systems design was expressed by five articles in the 
scoping review literature sample. 

Marwitz and colleagues (2019) described the need for innovation in intravenous 
(IV) smart pumps alerts, to decrease unnecessary alerts and improve overall usability. 
Their findings revealed that the majority of IV smart pump alerts were inappropriate, 
often caused medical errors and resulted in alert fatigue (Marwitz et al., 2019). Along 
these lines, King et al. (2018) found that poor human computer interaction was one of the 
main barriers of EHR adoption. Additionally, their research revealed that excessive 
interaction with EHR interfaces, can prevent physicians from interacting safely and 
efficiently with other technologies (King et al., 2018). Tolley and colleagues (2018) 
highlighted the importance of employing human factors principles in the development 
and design of CDSS. The authors described that alert philosophy (i.e., the reason for the 
alert and the severity of alert) is often not adequately communicated to end users (Tolley 
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et al., 2018). Furthermore, the authors noted that in addition to improving alert relevancy, 
other human factors should be taken into consideration with system design (Tolley et al., 
2018). In keeping with these findings, Horsky et al. (2017) assessed the reasoning 
patterns of physicians who used HIT. Their findings revealed that the majority of 
physicians conceptualized risk as a complex set of interdependent and patient specific 
trade-offs (Horsky et al., 2017). Furthermore, the authors found that physicians “routinely 
left prescriptions unchanged after receiving low-severity alerts when they felt confident 
that patients would tolerate the drug combination and that treatment benefits outweighed 
the risk” (Horsky et al., 2017, p.1). Lastly, Missiakos et al. (2015) described how 
emerging technologies for the prevention of DDIs, were often evaluated and implemented 
without the input or involvement of relevant end users (e.g., healthcare providers). 

3.6.  Summary of the thematic analysis 

The scoping review themes have been summarized (Table 2) and the thematic findings 
included: seventeen articles that focused on alert fatigue and the appropriateness of 
overriding alerts, eight articles on safety issues, six articles on technology as a source of 
errors, five articles that focused on the importance of usability and human factors 
engineering. Furthermore, Table 2 illustrates: the publication and author details, study 
type, object (s) of the study (i.e., the identified intervention or subject assessed in each 
respective article), key article highlights of potential contributing factors to alert fatigue 
and technology-induced errors. 

Table 2 
Data extraction table 

Publication Study type Object (s) of the 
study 

Potential contributing factors 

Theme 1: Alert fatigue and the appropriateness of overriding alerts 

1. 1. Bryant et al., 
2014 

Retrospective EHR with CPOE 
and integrated 
CDSS 

 

 

a) Alerts appeared too late in the 
clinical workflow. 

b) Inappropriate override 
classifications. 

c) Interruptive alert window. 

d) Alert notification prevents 
further action. 

2. Dexheimer et 
al., 2017 

Retrospective 
study 

CDSS a) User behavior. 

b) Alert overrides. 

c) Inappropriate alerts. 

d) Low specificity of alert rules. 

3. Drew et al., 
2014 

Observational 
study 

Physiologic monitor 
devices 

a) Alarms not tailored to the 
individual patient. 

b) Persistent atrial fibrillation alerts. 

c) Limitation of device 
configuration. 

d) Adequate training not provided 
to clinicians. 

4. Harrison et 
al., 2017 

Simulation 
study 

EHR based sepsis 
alert system 
(AWARE)  

 

a) Chronic workflow interruptions. 

b) Human error. 

c) Information overload. 



   

 

   

   

 

   

   

 

   

   510 A. L. Joseph et al. (2021)    
 

    

 

 

   

   

  

   

   

 

   

       
 

 

d) Alerts not respected and deemed 
burdensome. 

5. Herasevich, 
2013 

Descriptive Rule – based 
decision support 
system (AWARE) 

a) False alarms. 

b) Clinically irrelevant alarms. 

c) Sound pollution. 

d) Frustration caused by system 
limitations. 

6. Khuntia et 
al., 2015 

Ethnographic  Intelligent care 
system 

a) Frequent interruption between 
patients. 

b) Technical issues. 

c) Inappropriate and ambiguous 
alert notifications.  

d) Alert sent to wrong provider. 

7. Lo et al., 
2009 

Descriptive and 
randomized 
controlled trial 
(RCT)  

Non – interruptive 
medication 
laboratory 
monitoring alerts 

a) Lack of alert compliance. 

b) Deliberate choice to ignore alert. 

c) Passive alerts are easily ignored. 

d) Alert notification color scheme 
jarring. 

8. Niazkhani et 
al., 2020 

Descriptive Clinical context 
aware CDSS  

a) Workflow disruption. 

b) Alerts not customized to clinical 
specialty. 

c) Alerts that required too many 
clicks. 

d) Time commitment to respond to 
alerts. 

9. Olakotan et 
al., 2020 

Systematic 
review 

CDSS a) Usability problems. 

b) Screen displays not adequate.  

c) Complicated drop-down menus. 

d) Ambiguous code categories.  

10. Pohl et al., 
2014 

Mixed method EHR a) High sensitivity setting. 

b) Incomplete medication lists. 

c) Alert severity not specified.  

d) Low tolerance for alert 
interaction.  

11. Poly et al., 
2020a  

Model 
development 
and validation 

CDSS  a) Physician culture and 
departmental acceptance of override 
appropriateness. 

b) Physician preferences to rely on 
clinical knowledge vs technology.  

c) Alert desensitization caused by 
frequent incorrect or irrelevant 
notifications. 

d) Workflow disruption. 

12. Poly et al., 
2020b 

Systematic 
review 

CDSS a) Ambiguous alert content. 

b) Mediocre functionality. 

c) Erroneous alert assessment by 
physicians. 

d) Workflow disruption. 
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13. Riedmann 
et al., 2011 

Literature 
review with 
qualitative 
interviews 

CPOE systems a) Characteristics of the patient. 

b) Characteristics of the 
organizational unit. 

c) Context of clinical situation. 

d) Perceived relevancy of the alert. 

14. Shah et al., 
2018 

Narrative 
review 

Smart infusion 
pump  

a) Lengthy work arounds to avoid 
alerts. 

b) Number and frequency of 
clinically irrelevant alerts. 

c) Number and frequency of 
clinically relevant alerts. 

d) Desensitization to constant 
notifications. 

15. Simpao et 
al., 2015 

Cross sectional 
study 

Electronic 
dashboard for EHR 
medication alerts 

a) Highly sensitive alerts with low 
specificity. 

b) Excessive non clinically relevant 
DDI alert rules. 

c) Cluttered alert windows. 

d) Complicated alert messaging and 
resolution.  

16. Zenziper 
Straichman et 
al., 2017 

Retrospective 
and prospective 
study 

SafeRx prescription 
CDSS 

a) Alerts are ignored and not read 
by physicians.  

b) Desensitization to irrelevant 
alerts, as patients are monitored in 
acute care.  

c) DDI alerts are not accurate and 
are based on weight metrics, not 
found in the EHR. 

d) Frustration at alert frequency. 

17. Wan et al., 
2020 

Scoping review MedAlert -
blockchain based 
alternative to CDSS 

a) Workflow disruption.  

b) Traditional CDSS have low 
specificity and high volume of 
alerts. 

c) Alerts are often generated 
incorrectly. 

d) Frequent low level and high-
level alerts are sent to healthcare 
providers. 

Theme 2: Safety issues 

18. Beeler et 
al., 2014 

Descriptive CDSS a) Too many false positive alerts. 

b) Additional workload. 

c) Need for specificity of electronic 
notifications. 

d) Frustration surrounding 
erroneous alerts. 

19. Bos et al., 
2017 

Systematic 
review 

Prescriber education 
and medication 
related patient harm 

a) Prescribing process limitations. 

b) Comorbid patients and 
polypharmacy. 

c) Workload and inadequate 
staffing levels. 
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d) Shift and changeover personnel 
inconsistencies. 

20. Galt et al., 
2019 

Descriptive HIT a) System information missing or 
incorrect. 

b) Drop down menu selection 
errors. 

c) Medications not found in the 
system.  

d) Human errors such as entering 
wrong medication or dose. 

21. Keasberry 
et al., 2017 

Narrative Hospital-based 
eHealth 
technologies 

a) Increased workload caused by 
technology. 

b) Disruption to workflow, caused 
by lengthy workarounds. 

c) The introduction of new 
prescribing errors, caused by lack 
of standardized workflow. 

d) Poor system design. 

22. Otero et al., 
2016 

Non-systematic 
review 

HIT implementation a) Lack of technical skills to 
facilitate implementations. 

b) Lack of consideration for 
usability testing. 

c) Security concerns. 

d) Resource constraints. 

23. Papadakos, 
2014 

Descriptive Electronic 
distractions  

a) Alarm hazards. 

b) Distraction from personal 
technology devices. 

c) Patient data mismatches in 
EHRs. 

d) Missing data from other HIT. 

24. Ranji et al., 
2014 

Narrative 
review 

CPOE with CDSS a) Workflow changes.  

b) Availability and placement of 
workstations can impair clinician 
efficiency. 

c) System design problems. 

d) Data entry restrictions.  

25. Smith et al., 
2013 

Prototype 
evaluation 

Decision support 
software prototype  

a) System mandated multitasking. 

b) Inconsistency of alert 
mechanism. 

c) Limited alert information. 

d) Frequent interruptions and 
clinical workflow disruption. 

Theme 3: Technology as a source of errors 

26. Dilsizian & 
Siegel, 2013 

Descriptive AI in medicine and 
cardiac imaging 

a) Lack of access to large de- 
identified databases. 

b) Potential to disrupt clinical 
workflow.  

c) Perceived medicolegal issues. 

d) Regulatory and ethical 
challenges. 
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27. Farley et 
al., 2013 

Descriptive case 
study 

Emergency 
department 
information systems 
(EDIS) 

a) Variance in system functionality.  

b) Poor data display.  

c) Communication failures. 

d) Wrong order wrong patient 
errors. 

28. Gold et al., 
2015 

Descriptive EHR a) Communication break downs 
among providers. 

b) Inconsistent information 
presented in EHR. 

c) Clinical workflow disruption. 

d) Mandated reliance on 
technology. 

29. Légat et al., 
2018 

Systematic 
review 

CDSS for drug 
allergy 

a) Stressful working conditions. 

b) Hospital culture and mandated 
reliance on technology.  

c) Drug coding inconsistencies. 

d) No documentation or reporting 
standards. 

30. Levick et 
al., 2013 

Descriptive 
evaluative 
intervention 
study 

CDSS intervention 
in a CPOE system 

a) Frequent alarms. 

b) Tests occurred daily and high 
cost. 

c) Intervention caused more alerts. 

d) Productivity loss and increased 
stress in workplace. 

31. Ni et al., 
2018 

Observational 
study 

Real time 
medication 
administration error 
(MAE) detection 
system 

a) False positive alerts. 

b) False negative alerts.  

c) Documentation issues. 

d) Clinical errors. 

Theme 4: The importance of usability and human factors engineering 

32. Horsky et 
al., 2017 

Partial 
simulation and 
standardized 
scenario case 
study 

DDI alerts a) High proportion of alerts. 

b) Clinically irrelevant alerts. 

c) Ambiguous display of 
information. 

d) Inconsistent information. 

33. King et al., 
2018 

Pilot simulation 
study 

EHRs incorporated 
with real -time 
location systems 
(RTLS) 

a) Poor human computer 
interactions with EHR systems. 

b) Number of required clicks to 
access patient data. 

c) System disrupted and 
complicated the clinical workflow. 

d) Confusion about system use. 

34. Marwitz et 
al., 2019 

 

  

Descriptive IV smart infusion 
pumps with a dose – 
error reduction 
system (DERS) 

a) Inconsistent institutional drug 
libraries. 

b) Inconsistent alerting practices. 

c) Diverse pump manufacturers and 
heterogenous products. 

d) Drug limit setting varied per 
institution and product. 
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35. Missiakos 
et al., 2015 

Exploratory Technologies that 
assist in DDI 
identification 

a) System limitations and 
capabilities not adequately 
communicated.  

b) Insufficient provider training on 
system components.  

c) DDI algorithmic logic and 
rational for notifications not 
effectively provided.  

d) Over reliance on system for 
detection of DDIs. 

36. Tolley et 
al., 2018 

Extensive 
literature review 

CDSS a) Variability in alert type and 
notifications. 

b) Ambiguous and unknown alert 
severity parameters. 

c) Drug dosage alerts not 
individualized. 

d) Drug dosage alerts don’t deliver 
practical alternatives. 

 

3.7.  Limitations 

As this search was conducted electronically and in English, it did not include paper 
articles or literature published in other languages. The available literature was also 
constrained by the search terms, thus limiting the articles available for inclusion and 
analysis. Although various themes were observed in the included literature, the articles 
were clustered into four thematic categories. Additionally, during the interpretation phase 
there was potential for biases to influence the meaning of the categorical descriptors, as 
such cross-checks were done to bolster interpretation. An ethics consult was not required, 
as the study included publicly available information only. 

4. Discussion 

This scoping review presents an analysis of 36 articles from four established databases: 
CINAHL®, Web of Science®, IEEE Xplore®, PubMed®. Data was extracted from the 
articles, tabulated (Table 2) and a thematic analysis was conducted. The findings revealed 
that despite increasing adoption rates, collectively HIT are still considered in early stages 
of their system development cycles (SDLC) and additional measures are required to 
ensure that they continue to advance safely and effectively in industry (Kushniruk, 2002). 
Additionally, it was discovered that there may be a relationship between poorly designed 
systems and technology-induced errors. The thematic analysis presented four prominent 
themes: alert fatigue and the appropriateness of overriding alerts, safety issues, 
technology as a source of errors, the importance of usability and human factors 
engineering. Furthermore, the overarching theme of the four thematic categories was the 
importance of UX in the context of HIT design and the frequency of alert notifications. 

It was revealed that the origins of technology-induced errors and alert fatigue in 
healthcare, could be a consequence of HIT designed and implemented without human 
factors and usability engineering considerations. Furthermore, many articles presented 
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examples where the cognitive and information processing capacity of healthcare 
providers was not considered in HIT design, acquisition or implementations. Such 
omissions are substantial, as healthcare providers are the facilitators of healthcare service 
delivery and the principal end users of HIT. Consequently, providers are often required to 
leverage various HIT during their daily activities of care, to access patient health 
information. These varied and siloed HIT, complicate the clinical workflow and reduce 
the amount of diagnostic time that providers can allocate to each patient. Sourcing health 
information from various locations and systems can also contribute to cognitive burden, 
as each respective HIT has varied display screens, alerting mechanisms and login 
information. Therefore, the research findings revealed that there is indeed a relationship 
between alert fatigue and technology-induced errors. Furthermore, accessing health data 
from various fragmented HIT sources can create unsustainable clinical workflows, 
medical errors and compromise patient care. The literature did not detail existing 
organizational strategies to address such problems as alert fatigue and technology-
induced errors to enhance patient safety. Contrarily, the findings revealed that the 
combined negative consequences of medical errors caused by cognitive impairment (i.e., 
alert fatigue) and technology-induced errors is not yet quantifiable. In fact, it is not clear 
if standardized mechanisms for cross sectional evaluation exist. If they do, it is assumed 
that they are at the early stages of development and are not yet generalizable for use in 
the broader healthcare context. Therefore, it has been implied that such recorded or 
delineating data does not yet exist in aggregate in healthcare. Moreover, the scoping 
review revealed that a standardized evaluative mechanism to monitor or differentiate 
between error types (e.g., medical errors vs technology-induced errors) in healthcare also 
does not exist. Therefore, the relationship between alert fatigue and technology-induced 
errors is complex and not fully understood. In terms of technological recommendations to 
improve the current issues surrounding safety, the scoping review findings did not 
present recommendations, or a global cohesive strategy to mitigate such issues. 
Additionally, a standardized organizational approach, to addressing poorly designed 
technologies that may pose risks to the cognitive abilities of physicians and healthcare 
providers was not present in the literature. 

To satisfy this gap in the literature and to further illustrate the importance and 
necessity of designing safe and usable HIT from an end user perspective, the authors 
developed the Flow of Cognitive Processing Model (Fig. 2). The model was inspired by 
Atkinson and Shiffrin’s (1968) model of memory and Sweller’s (1988) research on 
cognitive load theory. Fig. 2 identifies the synergies between information processing, and 
information saturation in the context of varied environmental stimuli exposure in 
healthcare settings. Although the model was intended for use in healthcare settings, the 
model’s iterative cognitive flow cycle is applicable to any industry where technology can 
influence human behavior, memory, cognitive capacity in information processing. The 
Flow of Cognitive Processing Model illustrates the complexity of issues surrounding 
poorly designed HIT, that may increase cognitive burden for healthcare provider end 
users. The model can also be used to emphasizes how HIT can alter natural thought 
patterns, eye movement and human information processing capabilities. The model 
displays the iterative nature of information processing, as incoming stimuli is cognitively 
processed according to memory stage (Table 1) and human ability. Each phase of the 
model relates to a different aspect of memory and information processing. The model 
provides a systems and humanistic perspective to the correlations between clinical 
workflow, patient safety and illustrates how information processing is contingent on HIT 
design. 
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Fig. 2. Flow of Cognitive Processing Model 

As detailed in Phase 1 of the Flow of Cognitive Processing Model, information 
processing begins with the healthcare provider receiving new information, sensory inputs, 
and external stimuli. Cognitive processing occurs in response to the level of stimuli that 
the individual is exposed to. In Phase 2 information processing is guided by HIT design, 
frequency of alert interruptions and sensory memory. The model demonstrates that 
designing HIT according to sensory memory could improve human information 
processing abilities. In Phase 3 of the model, information processing, reading fluency 
(e.g., flow and direction of eye movement) are contingent on HIT design. Therefore, the 
way that information is displayed on HIT screens, guides the natural path that the end 
users’ eyes take when reading or accessing health information. Their information 
processing abilities are further impacted by the frequency of alert notifications embedded 
within HIT. These distracting alerts interrupt thought patterns, complicate clinical 
workflows and often prevent providers from completing intended tasks. Acute care 
settings are also a source of additional stimuli, as they are typically loud, chaotic 
environments plagued with several operational and auditory interruptions (e.g., paging or 
intercom systems, patient requests, conflicting priorities). Environmental overstimulation 
and alert fatigue may occupy the limited capacity of a provider’s short-term memory and 
working memory (Table 1). With exhausted short-term memory and working memory 
reserves, it is not humanly possible for medical providers to respond to constant stimuli. 
Nor are they effectively able to retain or store information that could be used for 
providing care in their long-term memory. Therefore, Phase 3 also depicts the necessity 
of establishing clinical guidelines and designing HIT dashboards based on the short-term 
memory, working memory and long-term memory capabilities of healthcare providers. 
Such initiatives could reduce cognitive load and improve patient safety by reducing the 
risk of technology-induced errors. In Phase 4 information retention and long-term 
memory are activated, in that the healthcare provider’s ability to recall memories moves 
to the forefront. The modelling is contingent on semantics, applying logic and reasoning 
to stimuli typically found in clinical environments. Consideration of such a model could 
inform the design of alerts and improve their ability to enhance safety by considering the 
information processing capabilities and limitations of healthcare providers. 

Utilizing the Flow of Cognitive Processing Model to inform HIT design and 
procurement activities may result in the acquisition and implementation of patient and 
provider centric HIT. Fig. 2 contextualizes how interactions with technology are 
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complex, due to varied (e.g., provider specific) clinical workflows and siloed HIT (e.g., 
EHRs, clinical applications) required to support patient care. Furthermore, the model 
presents an iterative perspective and an insightful view into the cognitive realms of 
healthcare providers. Viewing the complexities of healthcare providers from a humanistic 
lens could aid in fostering an environment where intuitive, efficient and relevant HIT is 
purchased and implemented with the involvement of clinical and organizational 
stakeholders. Such a holistic approach to HIT acquisition and implementation could 
reduce alert fatigue and mitigate the introduction of technology-induced errors. 

5. Conclusions 

This paper has presented a variety of perspectives and research insights into the concept 
of alert fatigue and its relationship to technology-induced errors. The findings of the 
scoping review indicate that HIT pose significant promise when streamlining processes 
and reducing medical errors. However, there remains a critical and significant need to 
assess HIT from a patient safety and quality lens. Human factors perspectives and 
usability engineering should be considered vital aspects of the system design, testing and 
implementation process. Future research could include journey mapping (Joseph et al., 
2020) activities with relevant healthcare stakeholders (e.g., caregivers, physicians, 
patients) who are experiencing alert fatigue or other challenges across the continuum of 
care. The insights from these mapping exercises and visualizations could address the 
current gaps in literature including: the benefits of journey mapping, alert fatigue, 
cognitive limitations of healthcare providers, importance of clinical workflow in HIT 
design, root cause of technology-induced errors, effective HIT implementation strategies. 
Illustrating the complex workflows of healthcare providers, as they circumvent 
constraints and barriers caused by HIT along their journey in providing care to patients is 
vital. Such insight could also assist decision makers in assessing hospital capacity, EHR 
design, patient mortality rates and other resource utilization assessments. 
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