

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 528

Mining workflow processes from distributed workflow

enactment event logs

Kwanghoon Pio Kim*

Collaboration Technology Research Lab

Department of Computer Science

Kyonggi University, South Korea

E-mail: kwang@kgu.ac.kr

*Corresponding author

Abstract: Workflow management systems help to execute, monitor and
manage work process flow and execution. These systems, as they are executing,
keep a record of who does what and when (e.g. log of events). The activity of

using computer software to examine these records, and deriving various
structural data results is called workflow mining. The workflow mining activity,
in general, needs to encompass behavioral (process/control-flow), social,
informational (data-flow), and organizational perspectives; as well as other
perspectives, because workflow systems are "people systems" that must be
designed, deployed, and understood within their social and organizational
contexts. This paper particularly focuses on mining the behavioral aspect of
workflows from XML-based workflow enactment event logs, which are
vertically (semantic-driven distribution) or horizontally (syntactic-driven

distribution) distributed over the networked workflow enactment components.
That is, this paper proposes distributed workflow mining approaches that are
able to rediscover ICN-based structured workflow process models through
incrementally amalgamating a series of vertically or horizontally fragmented
temporal workcases. And each of the approaches consists of a temporal
fragment discovery algorithm, which is able to discover a set of temporal
fragment models from the fragmented workflow enactment event logs, and a
workflow process mining algorithm which rediscovers a structured workflow

process model from the discovered temporal fragment models. Where, the
temporal fragment model represents the concrete model of the XML-based
distributed workflow fragment events log.

Keywords: Distributed workflow management system; Distributed events log;
Distributed workflow process mining; Workflow fragmentation

Biographical notes: Kwanghoon Pio Kim is a full Professor of Computer
Science Department and the founder and supervisor of the collaboration
technology research laboratory at Kyonggi University, South Korea. Also, he is
in charge of the director of the computerization and information institute in
Kyonggi University, and was in charge of the director of the contents
convergence software research center established at 2007 as a new GRRC
project funded by the Gyeonggi Provincial Government, Republic of Korea. He
received B.S. degree in computer science from Kyonggi University in 1984.
And he received M.S. degree in computer science from Chungang University in

1986. He also received his M.S. and Ph.D. degree from the Computer Science
Department of University of Colorado at Boulder, in 1994 and 1998,
respectively. He had worked as researcher and developer at Aztek Engineering,
American Educational Products Inc., and IBM in USA, as well as at Electronics

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 529

and Telecommunications Research Institute (ETRI) in South Korea. In present,
he is a vice-chair of the BPM Korea Forum. He has been in charge of a
country-chair (Korea) and ERC vice-chair of the Workflow Management
Coalition. He has also been on the editorial board of the journal of KSII, and

the committee member of the several conferences and workshops. His research
interests include groupware, workflow systems, BPM, CSCW, collaboration
theory, Grid/P2P distributed systems, process warehousing and mining,
workflow-supported social networks and analysis, and process-aware
information systems.

1. Introduction

A Workflow Management System (WfMS) is defined as a system that (partially)
automates the definition, creation, execution, and management of work processes through

the use of software that is able to interpret the process definition, interact with workflow

participants, and invoke the use of IT tools and applications. Furthermore, the platforms

for WfMSs’ deployment and enactment have been swiftly evolving into the distributed

computing environments, such as clustering, grid, P2P and cloud computing

environments. Particularly, in the paper, as a platform, we consider the enterprise

workflow grid (Kim, 2007) and the enterprise workflow cloud (Kim, 2007) computing

environments. Note that the fragments of workflow models are disseminated over the

workflow enactment nodes of the platform, and that their enactment event logs formatted

in XML are recorded onto themselves.

Such distributed workflow management systems are becoming a catalyst for
triggering emergence of the concept of distributed workflow mining that rediscovers

several perspectives—control flow, data flow, social, and organizational perspectives—of

workflows from the scattered workflow execution event histories (logs) collected at

runtime of distributed workflow models fragmented from an original workflow model. In

this paper, we particularly focus on mining the behavioral—control flow—perspective

(Park & Kim, 2008) of the fragmented workflow models. In general, a workflow model is

described by several entities, such as activity, role, actor, invoked applications, and

relevant data, and where, steps of a work process are called activities (jobs or transactions)

that flow through the system are called workcases (Ellis, 1979) or workflow instances.

The control flow perspective, which we particularly call a workflow process, specifies the

transition precedence—sequential, conjunctive(AND) and disjunctive(OR) execution

sequences—among the activities, and it is represented by the concept of workflow
process model defined in this paper by using the graphical and formal notations of the

information control net (ICN) (Kim & Ellis, 2007). Also, we assume that the workflow

process model keeps the proper nesting and the matched pairing properties in modeling

the conjunctive and the disjunctive transitions—AND-split, AND-join nodes and OR-

split, OR-join nodes, which are the basic properties of a structured workflow process

model (Liu & Kumar, 2005; Kim & Ellis, 2007).

Based upon the concept of the structured workflow process model (Liu & Kumar,

2005), we propose a series of distributed workflow process mining approaches that play a

theoretical basis for implementing a distributed workflow mining system that is able to

rediscover structured workflow process models from a series of fragmented XML-based

workflow enactment event logs (Kim, 2006), which are horizontally (instance-based

 530 K. P. Kim (2012)

distribution) or/and vertically (activity-based distribution) distributed over the networked

workflow enactment components. Each of the fragmented workflow event logs is

typically an interleaved list of events from numerous workcases—workflow instances—

allocated to the corresponding workflow enactment component. By examining and

combining the fragmented logs, we can discover the temporal ordering of activity

executions for each workcase, which is dubbed a temporal workcase, and then infer a
general structured workflow process structure by amalgamating the discovered temporal

workcases.

As a simple example, suppose we examine the fragmented logs of a workflow

process that has four activities, , , , and , each of which is

vertically/horizontally fragmented and allocated into a different workflow enactment

component deployed over a distributed computing environment. Suppose also that all

four activities are always executed in some order by each workcase, even though the

enactments of the activities are conducted in different workflow enactment components.

If we observe over a large number of workcases that is always executed first and is

always executed last, then we can begin to piece together a workflow process model that

requires to complete before all other activities, and to execute after all others. If we

find workcases in the log where begins before , and other cases where begins

after , then we can infer that the workflow process begins with , after it completes,

 and execute concurrently (Conjunctive Transition: AND Control Flow); and after

they both complete, then executes.

This is an extremely simplified example that ignores the other important control

transition construct—Disjunctive Transition (OR Control Flow)—and their combinations.

However, it is enough to explain the basic principle of the distributed workflow process
mining. So, in the remainder of this paper, we are going to show that our distributed

workflow mining approaches are able to handle all of the possible activity execution

cases through the concepts of fragmented temporal workcases. At first, the next section

presents the meta-model of the structured workflow process model with graphical and

formal notations, and describes how to fragment the model through vertical, horizontal or

hybrid fragmentation approach. In the main sections of this paper, we firstly describe an

XML-based workflow enactment event log format, and illustrate distributed workflow

process mining approaches and the detailed descriptions of the temporal workcase

discovery algorithms and the workflow process mining algorithms with some examples.

Finally, we discuss the constraints of the proposed approaches and algorithms and the

related work.

2. Workflow fragmentation

This paper basically assumes that the information control net methodology (Ellis, 1979)

is used to represent workflow process models. The information control net (ICN) was

originally developed to describe and analyze information flow by capturing several

entities within office procedures, such as activities, roles, actors, activity precedence,

applications, and repositories. It has been used within actual as well as hypothetical

automated offices (1) to yield a comprehensive description of activities, (2) to test the

underlying office description for certain flaws and inconsistencies, (3) to quantify certain

aspects of office information flow, and (4) to suggest possible office restructuring
permutations. Especially, we define the structured workflow process model (Liu &

Kumar, 2005) preserving the proper nesting and matched pairing properties. Once a

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 531

structured workflow process is defined, it needs to be fragmented for being enacted over

the distributed workflow enactment platform, like enterprise workflow grid (Kim, 2007).

So, this section describes the fragmentation methods (Kim, 2012)—vertical, horizontal

and hybrid fragmentation—of workflow processes defined by the structured workflow

process model.

Fig. 1. Graphical notations

2.1. ICN-based structured workflow process model

We focus on the activities and their related information flows by defining the ICN-based

structured workflow process model, which is the target workflow model of the distributed

workflow process mining approach proposed in the paper, through a set of graphical

constructs and their formal representation.

2.1.1. Graphical representation

As shown in Fig. 1, a structured workflow process model consists of a set of activities

connected by temporal orderings called activity transitions. In other word, it is a

predefined set of work steps, called activities, with a partial ordering (or control flow) by

combining sequential transition types, disjunctive transition types (after activity , do

activity or , alternatively) with predicates attached, and conjunctive transition

types (after activity , do activities and concurrently). Particularly, the

disjunctive and conjunctive transition types must keep the structured properties of proper

nesting and matched pairing in defining workflow process models. An activity may be

either a compound activity containing another sub-process, or a basic unit of work, which

is called a work activity. The work activity is executed in one of three modes: manual,

automatic, or hybrid, and is mapped to a role that takes charge of enacting the

corresponding one, as shown in the left-hand side of Fig. 1. Fig. 2 is a simple example of

the structured workflow process model with three roles and five participants. Note that the
AND-Control nodes (AND-split and AND-join that are presented by solid dots(•)), and

the OR-Control nodes (OR-split and OR-join that are represented by hollow dots(◦)), in a

model must be properly nested and matched paired in order to build a structured

workflow process model (Ellis, Kim, & Rembert, 2006; Ellis, Rembert, Kim, & Wainer, 2006;

Kim & Ellis, 2007).

2.1.2. Formal representation

The structured workflow process model needs to be represented by a formal notation that

provides a means to eventually specify the model in textual language or in database, and

 532 K. P. Kim (2012)

both. The following definition is the formal representation of the structured workflow

process model:

Fig. 2. A simple structured workflow process model

Definition 1. Structured Workflow Process Model (SWPM). A basic structured

workflow process model is formally defined through 4-tuple over an

activity set A, a role set R, a participant set P, and a transition condition set T, where

 I is a finite set of initial input repositories, assumed to be loaded with

information by some external process before execution of the model;

 O is a finite set of final output repositories, which is containing

information used by some external process after execution of the model;

 ,

where, : A → (A) is a multi-valued mapping function of an activity to its set of

(immediate) successors, and : A → (A) is a multi-valued mapping function of
an activity to its set of (immediate) predecessors;

 ,

where, : A → (R) is a single-valued function mapping an activity to a role, and

 : R → (A) is a multi-valued function mapping a role to its sets of associated

activities;

 ,

where, : R → (P) is a multi-valued function mapping a role to its sets of

associated participants (actors), and : P → (R) is a multi-valued function
mapping a participant to its sets of associated roles;

 ,

where, : A → (T) is a multi-valued mapping function of an activity to its

incoming transition-conditions (T) on each arc, ((),), and : A → (T) is a

multi-valued mapping function of an activity to its outgoing transition-conditions (

T) on each arc, (, ());

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 533

Table 1

Formal representation of the structured workflow process model

 over A, R, P, T /* The Structured Workflow Process Model

A = { } /* Activities

R = { } /* Roles

P = { } /* Participants

T = { } /* Transition Conditions
I = /* Initial Input Repositories

O = /* Final Output Repositories

 {{ }};

 {{ }}; {{ }};

 {{ }}; {{ },{ }};

 {{ }}; {{ , }};

 {{ }}; {{ }};

 {{ }}; {{ }};

 {{ }}; {{ }};

 {{ },{ , }}; ;

 { }; { };

 { }; { , , };

 { }; { , };

 { }; { };

 { }; { };

 { };

 { };

 { };

 { }; { };

 { , , }; { };

 { }; { };

 { }; { };

 { }; { };

 { };

 { };

 ; { };

 { }; { };

 { }; {{ }, { }};

 { }; { };

 { }; { };

 { }; { };

 { }; { };

 { }; ;

2.1.3. Starting and terminating nodes

Additionally, the execution of a workflow process model commences by a single

transition-condition. So, we always assume without loss of generality that there is a single

starting node ()t the commencement, it is assumed that all input repositories in the set

I have been initialized with data by the external system:

∃αI∈ A | δi(αI) = ∧κo(αI) = {{λ}}.

 534 K. P. Kim (2012)

The execution is terminated with any one output transition-condition. Also we assume

without loss of generality that there is a single terminating node (αF). The set of output

repositories O is data holders that may be used after termination by the external system:

∃αF∈ A | δo(αF) = ∧κi(αF) = {{λ}}.

2.1.4. Implication: Structured modeling methodology preserving the proper
nesting and the matched pairing properties

Given a formal definition, the structured ordering of a workflow process model can be

interpreted as follows: For any activity α (δ = δi∪δo), in general,

 (α) = {

{β11, β12, . . . , β1m(1)},

{β21, β22, . . . , β2m(2)},

. . . ,

{βn1, βn2, . . . , βnm(n)}

}
means that upon completion of activity α, either a set of transitions that simultaneously

initiates all of the activities βi1 through βim(i) occurs, or a transition that only one value of

βi1 i(1 ≤ i ≤ n) is selected as the result of a decision made within activity α occurs, or

both. In general, if n = 1, then no decision is needed and α is not a decision node. If

also m(i) = 1 for all i , then no parallel processing is initiated by completion of α. (Note

that βij∈ {∀α, { }}, (1 ≤ i ≤ n), (1 ≤ j ≤ m)). In the SWPM graphical notation, the

former, that an activity has a conjunctive (or parallel) outgoing transition, is represented by

a solid dot—AND-split, and the latter, that an activity has a disjunctive (or decision)

outgoing transition, is represented by a hollow dots—OR-split. And also,

δi(α) = {

{β11, β12, . . . , β1m(1)},
{β21, β22, . . . , β2m(2)},

. . . ,

{βn1, βn2, . . . , βnm(n)}

}

means that upon commencement of activity α, either all the activities, βi1 through

βim(i), simultaneously completes, or only one transition βi1 out of the activities β11

through βn1, i(1 ≤ i ≤ n) completes, or both. In general, if m(i) = 1 for all i, then no

parallel processing is completed before the commencement of α. In the SWPM graphical

notation, the former, that an activity has a conjunctive (or parallel) incoming transition,

is represented by a solid dot—AND-join, and the latter, that an activity has a

disjunctive (or decision) incoming transition, is represented by a hollow dot—OR-join.
Summarily, the following is to formally specify the basic transition types depicted in Fig.

1. Also, Table 1 is to represent the formal description of the structured workflow process

model in Fig. 2.

(1) Sequential Transition

incoming → δi (αB) = {{αA}}; outgoing → δo(αB) = {{αC}};

(2) OR Transition

or-split → δo(αA) = {{αB}, {αC}}; or-join → δi(αD) = {{αB}, {αC}};

(3) AND Transition

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 535

and-split → δo(αA) = {{αB, αC}}; and-join → δi(αD) = {{αB, αC}};

2.2. Workflow fragmentation methods

Based upon the ICN-based structured workflow process model described in the previous

subsection, this subsection defines the basic concept of workflow fragmentation (Kim,

2012). Conceptually speaking, the primary goal of the workflow fragmentation is to
reasonably break a workflow process into fragments, and to distribute the fragments over

the networked workflow engine’s components running on an enterprise workflow grid

computing environment (Kim, 2007). According to enacting the instances of the

workflow process, each of the workflow engine components (that are associated to the

enactment of the workflow process’s instances) records its execution events into the

corresponding local log. The local event logs are formatted in the XML-based

fragmented workflow event log format extended from the original workflow enactment

event logging mechanism (Park & Kim, 2010) and the language (Kim, 2006). From those

XML-based distributed workflow event logs, it is possible to rediscover a structured

workflow process by applying the distributed workflow process mining approaches to be

proposed in the paper. At this moment, it is important to figure out how to fragment a
workflow process, which can be done vertically, horizontally or in hybrid. The vertical

fragmentation implies semantic-driven distribution purporting the collaborative

enactment of the fragments, while the horizontal fragmentation works for syntactic-

driven distribution mainly focusing on the instance types of the corresponding workflow

process. And the hybrid fragmentation implies applying the vertical fragmentation

approach to each of the fragments broken from the horizontally fragmentation approach.

In this section, we describe the basic principles of the vertical and horizontal

fragmentation methods, and the details of them.

2.2.1. Vertical fragmentation

A structured workflow process model consists of a set of activities and their temporal

precedences. In order to enact the model on a distributed computing environment (which

is supposed to be an enterprise grid computing environment (Kim, 2007)), it is necessary

to break the model into fragments and distribute them over the computing nodes.

Actually, the meaning of the vertical fragmentation implies semantic grouping of the

activities of the model, and each group can be allocated into each node of the computing

environment. Of course the vertical fragmentation can be done by random grouping

method, and it, however, ought not to be a reasonable approach, because it’s hard to

estimate its operational performance, as we know.

Fig. 3. The role-based vertical fragmentation result

 536 K. P. Kim (2012)

Conclusively, the vertical fragmentation based on the semantic grouping method

is to make activity-groups based upon the semantic components—roles and actors—

assigned to the structured workflow process model. As an example, we present one of the

semantic grouping methods, which we dub it the role-based workflow fragmentation

approach (Kim, 2012) that is made up of the role-based workflow fragment model and its

automatic generation algorithm. The fundamental idea of the approach is that the
activities to be performed by a same role are distributed to a same computing node. We

apply the approach to the structured workflow process model presented in the previous

subsection, and its vertical fragmentation result is illustrated in Fig. 3. The left-hand side

of the figure is the graphical representation of the role-based workflow fragment model,

and the right-hand side is the final activity fragments and the distribution status to the

associated computing nodes.

The formal definition of the role-based workflow fragment model is described in

[Definition 2], and its graphical primitives are oval(node), directed arc with

label(activity), solid dot(•: parallel) and hollow dot(◦: decision) as shown in Fig. 3. The

model represents two types of information—node flows and fragmented activities

through which we are able to get precedence (predecessor/successor) relationships among

nodes as well as distributed activities of each node. For an instance, the activities, αA, αD ,

αE , on the incoming directed arcs of the node, , are the assigned activities to the

corresponding node.

Definition 2. Role-based Workflow Fragment Model. A role-based workflow

fragment model is formally defined as ℜ = (ξ, ϑ, S, E), over a set R of roles and a set A of

activities, where,

 S is a finite set of the initial nodes;

 E is a finite set of the final nodes;

 ξ = ξi∪ξo /* Node Flow: successors and predecessors */

where, ξo : R → (R) is a multi-valued function mapping a node to its sets of

(immediate) successors, and ξi : R → (R) is a multi-valued function mapping a

node to its sets of (immediate) predecessors;

 ϑ = ϑi∪ϑo /* Fragments and Neighbor Fragments */

where, ϑi : A → (R) is a multi-valued function mapping a set of fragmented

activities into the node, η; and ϑo : A → (R) is a multi-valued function mapping a
set of neighbor fragments’ activities to the node, η;

In terms of fragmenting of a workflow process, it is definitely necessary to

automatically construct a role-based workflow fragment model. In other words, it is very

important to provide an automatic methodology for implementing the semantic grouping

method. Therefore, we conceive an algorithm for automatically construct the role-based

workflow fragment model from an ICN-based workflow model. The following is the

algorithm that is called the role-based workflow fragmentation algorithm. The time

complexity of the vertical fragmentation algorithm is O(n), where n is the number of

activities in the structured workflow process model, because the function has a single for-
loop with repeating as many as the number of activities. Therefore, the overall time

complexity is O(n).

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 537

PROCEDURE Role-based Workflow Fragmentation Algorithm
Input A Structured Information Control Model, Γ = (δ, ρ, λ, ε, π, κ, I, O);

Output A Role-based Workflow Fragmentation Model, ℜ = (, , S, E);

BEGIN
FOR (∀α∈A) DO

/* = ∪ */

Add (α) To ((all members of (α)));

Add (all members of (α)) To ((α));

/* = ∪ */

Add α To ((α));

Add (α) To ((α));

END-FOR

END-PROCEDURE

Table 2

The result of the role-based workflow fragmentation algorithm

ℜ over A, R /* The Role-based Workflow Fragmentation Model

A = { } /* Activities

R = { } /* Roles

S = /* Initial Nodes

E = /* Final Nodes

 : Predecessors : Successors

 ; {{ }};

 {{ }, { }, { }}; {{ }, { }};

 {{ }, { }}; {{{ }, { }}, { }};

 {{ }}; {{{ , }}, { }};

 {{ }, { }, { }}; ;

 : Fragments : Neighbor Fragments

 {{ }}; {{ }};

 {{ }, { }, { }}; {{ }, { }};

 {{ }, { }}; {{{ }, { }, { }};

 {{ }}; {{{ , }}, { }};

 {{ }}; ;

As result, we give the formal representation of the role-based workflow

fragmentation model of the structured workflow process model in Table 2, which is

automatically generated by applying the algorithm. As you can see, the table shows the
node flow information and each node’s fragmented activities based upon 3 nodes and 6

elementary activities.

2.2.2. Horizontal fragmentation

On the other hand, the conceptual meaning of horizontal fragmentation of a workflow

process implies syntactical grouping of activities. That is, the syntactic components of the

structured workflow process model, such as OR-nodes and AND-nodes, become the criteria

for grouping the activities. Conclusively, the reachable control-paths (Kim & Ellis, 2006) of

a structured workflow process become the horizontal fragments that are distributed into the

computing nodes, as shown in Fig. 4. The left-hand side of the figure represents the reachable
control pathes of the structured workflow process model introduced in the previous section,

and the right-hand side shows the horizontal fragments, each of which can be distributed into

 538 K. P. Kim (2012)

one of the computing nodes, CP-X and CP-Y. As you see, in this horizontal fragmentation

approach some activities like αA, αB may be duplicately grouped into different computing

nodes.

Fig. 4. The horizontal fragmentation result

In order to formally define the horizontal fragmentation approach, it is necessary to
define the controlpath-based fragment model (Kim, 2012) and its generation algorithm.

The definition of the controlpath-based fragment model is given in [Definition 3], and the

horizontal fragmentation algorithm described in the followings fragments a structured

workflow process model, as an input, into several controlpath-based fragment models. The

time complexity of the horizontal fragmentation algorithm is O(n), where n is the number

of activities in the structured workflow process model, because the function, H-

FRAGMENTATION(), is recursively traversing each activity in only once. Therefore, the

overall time complexity is O(n).

Definition 3.Controlpath-based Fragment Model of a structured workflow

process model. Let W be a CpFN, a control-path fragment net, that is formally defined

as CpFN = (ϱ, κ, I, O) over a set of activities, , and a set of transition-conditions, ,
where

where, : → (∈) is a multi-valued mapping of an activity to its set

of (immediate) successors, and : → (∈) is a single-valued

mapping of is a multi-valued mapping function of an activity to its set of

(immediate) predecessors;

where, (): a set of control transition conditions, ∈ , on each arc, ((),

); and (): a set of control transition conditions, ∈ , on each arc, (,

()), where ∈ ;

 I is a finite set of initial input repositories of the corresponding

structured workflow process model;

 O is a finite set of final output repositories of the corresponding

structured workflow process model;

PROCEDURE Controlpath-based Fragmentation Algorithm
Input A Structured Workflow Process Model, Γ = (δ, γ, λ, ε, π, κ, I, O);
Output A Set of Controlpath-based Fragment Models (CpFNs), ∀W = (ϱ, κ, I , O);

Initialize CpN ← { }; /* The empty net of CpFN. */

PROCEDURE H-FRAGMENTATION(In s ← { }, CpFN) /* Recursive

Function */

BEGIN

 ← ; CpFN. ← CpFN. { };

WHILE ((← ();) = { })

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 539

SWITCH (What type of the activity, , is?) DO

Case ’serial-type activity’:

 ← ; CpFN. ← CpFN. { };

CpFN. () ← ; CpFN. () ← ;

CpFN. () ← (); CpFN. () ← ();

break;

Case ’conjunctive-type (AND-split) activity’:

 ← ; CpFN. ← CpFN. { };

CpFN. () ← ; CpFN. () ← ;

CpFN. () ← (); CpFN. () ← ();

FOR (eachof ∀ ∈ ()) DO

 ← ; CpFN. ← CpFN. { };

CpFN. () ← ; CpFN. () ← ;

CpFN. () ← (); CpFN. () ←

 ();

END-FOR

FOR (eachof ∀ ∈ ()) DO

Call PROCEDURE H-

FRAGMENTATION(In ← , CpFN);

END-FOR

exit();

Case ’disjunctive-type (OR-split) activity’:

 ← ; CpFN. ← CpFN. { };

CpFN. () ← ; CpFN. () ← ;

CpFN. () ← (); CpFN. () ← ();

FOR (eachof ∀ ∈ ()) DO

Call PROCEDURE H-

FRAGMENTATION(In ← , CpFN);

END-FOR

exit();

Default: /* OR-join activity or AND-join activity */

 ← ; CpFN. ← CpFN. { };

CpFN. () ← ; CpFN. () ← ;

CpFN. () ← (); CpFN. () ← ();

break;
END-SWITCH

 ← ; ← ;

END-WHILE

 ← ; CpFN. ← CpFN. { }; /* is equal to . */

CpFN. () ← ; CpFN. () ← ;

CpFN. () ← (); CpFN. () ← ();

PRINTOUT CpFNs

END-PROCEDURE

2.3. Summaries

So far, as workflow fragmentation methods, the role-based workflow fragmentation

method (Kim, 2012) (vertical fragmentation) and the controlpath-based workflow

fragmentation method (Kim, 2012) (horizontal fragmentation) are introduced in this

section. Additionally, we can easily imagine a hybrid fragmentation method by

 540 K. P. Kim (2012)

synthetically applying those two fragmentation methods. That is, it is possible to apply

the role-based workflow fragmentation method to each of the controlpathbased workflow

fragments, and then we can chop a structured workflow process model into a much larger

number of fragments. Also, as an another vertical fragmentation method, it is naturally

possible to break a workflow model by the name of actor-based fragmentation method,

which is not described yet. The hybrid and the actor-based fragmentation methods ought
to be much more suitable for those enterprise cloud workflow or the enterprise grid

workflow enacting environments (Kim, 2007), in where a much larger number of

workflow enactment components are needed to be involved.

3. Distributed workflow XML-event log format

After disseminating the workflow fragments (role-based fragments or controlpathbased

fragments) that are vertically or horizontally (or in hybrid) fragmented by the

corresponding fragmentation algorithm, the fragments are enacted by each of the

distributed workflow engine’ components. Then, as shortly explained in the previous

section, the workflow engine’s components that are taking a role of formatting events
produce their event log messages after executing the requested services from the event

triggering components the requester and the worklist handler. After doing the formatting

job, they transfer the formatted event log messages to the event logging components the

log agents, for example. Based on the formatted messages, the log agents form the XML-

based event log information. The detailed names of the event types that are captured and

logged by the mechanism are summarized as the followings, and they are represented as

EventCode in the XML-based event log format (Kim, 2006).

 Event Types: Scheduled-Workitem, Started-Workitem, Completed-

Workitem, Changed-Workitem-State

3.1. Workflow fragment event log

As a workflow fragment instance executes, a temporal execution sequence of its activities is

produced and logged into a database or a file; this temporal execution sequence is called

workflow fragment trace or temporal fragment, which is formally defined in [Definition 5].

The temporal fragment is made up of a set of fragment event logs as defined in the

following [Definition 4].

Definition 4. Fragment Event Log. Let fel = (α, pc, wf, f, ac, c, ε, p∗, t, s) be a

workflow fragment event, where α is a workitem (activity instance) number, pc is a

package number, wf is a workflow process number, f is a fragment number, ac is an

activity number, c is a workflow instance (case) number, ε is an event type, which is
one of {Scheduled, Started, Completed}, p is a participant or performer, t is a timestamp,

and s is a workitem state, which is one of {Inactive, Active, Suspended, Completed,

Terminated, Aborted}. Note that * indicates multiplicity.

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 541

Table 3

Workflow fragment event log message and its XML-based language

Log Element XML Tag Description

FragmentLog <FragmentLog>. . .</FragmentLog> Event Log on Fragment

WorkitemID
<WorkitemID> WorkitemID

</WorkitemID>

Workitem ID of the

corresponding activity

associated with the

fragment

PackageID <PackageID> PackageID </PackageID>
Package ID associated

with the fragment

WorkflowID
<WorkflowID> WorkflowID

</WorkflowID>

Workflow Process ID

associated with the

fragment

FragmentID <FragmentID> FragmentID </FragmentID>

Workflow Fragment ID

associated with the

workitem

ActivityID <ActivityID> ActivityID </ActivityID>
Activity ID associated

with the fragment

WorkcaseID
<WorkcaseID> WorkcaseID

</WorkcaseID>

Workcase ID associated

with the fragment’s

instance

EventCode

<EventCode> EventCode =

{AssignedWorkitem | StartedWorkitem |

CompletedWorkitem |

ChangedWorkitemState} </EventCode>

Event code performed by

the workitem

EventTimestamp
<EventTimestamp> EvnetTimestamp

</EventTimestamp>

The time happening the

event code

Performer <Performer> Performer </Performer>
Performer ID of the

workitem

State

<State> State = {INACTIVE | ACTIVE |

SUSPEND | COMPLETED |

TERMINATED | ABORTED} </State>

The current state of the

workitem

In general, we consider a workflow event log to be stored in an XML format. An

XML-based workflow fragment event log language extended from (Kim, 2006) is precisely

described in Table 3. Because of the page length limitation, now let’s assume to simply use

the language to describe the XML schema of a workflow fragment event log in this paper.

3.2. Workflow fragment traces (Temporal fragments)

Definition 5. Workflow Fragment Trace (Temporal Fragment). Let WFT(f) be the

workflow fragment(f) instance’s execution event trace, where WFT(f) = (fel1 ,...,feln).

 542 K. P. Kim (2012)

Especially, the workflow fragment trace is called temporal fragment, TF(f), if all

activities of its underlined workflow fragment instance are successfully completed. There

are three types of the temporal fragments according to the events type, Scheduled, Started,

and Completed:

 ScheduledTime Temporal Fragment

{feli | feli.c = c ∧ feli.f = f∧feli.s =’Inactive’ ∧ feli.ε=’ScheduledWorkitem’ ∧

feli.t ≤ felj.t ∧ i < j ∧ 1 ≤ i, j ≤ n},

which is a temporally ordered workflow fragment event sequence based upon the

scheduled time-stamp.

 StartedTime Temporal Fragment

{feli | feli.c = c ∧ feli.f = f ∧ feli.s = ’Active’ ∧ feli.ε = ’StartedWorkitem’ ∧

feli.t ≤ felj.t ∧ i < j ∧ 1 ≤ i , j ≤ n},

which is a temporally ordered workflow fragment event sequence based upon the

started time-stamp.

 CompletedTime Temporal Fragment

{feli | feli.c = c ∧ feli.f = f ∧ feli.s = ’Completed’ ∧ feli.ε

= ’CompletedWorkitem’ ∧ feli.t ≤ felj.t ∧ i < j ∧ 1 ≤ i, j ≤ n},

which is a temporally ordered workflow fragment event sequence based upon the

completed time-stamp.

As shown in the definition of temporal fragment, there are three types of temporal

fragment ifferentiated from the temporal information (the event’s timestamp) logged

when the corresponding activity’s workitem event was happened. Originally, in the

workflow fragment event log schema, the events that are associated with the workitem

are ScheduledWorkitem, StartedWorkitem, CompletedWorkitem, and

ChangedWorkitemState. However, we take into account only three events—
ScheduledWorkitem, StartedWorkitem, CompletedWorkitem—which have associated

with their states, Inactive, Active and Completed, respectively, in the temporal fragment,

in order to form the types of temporal fragment to be used in the distributed workflow

process mining algorithm.

4. Distributed workflow process mining approaches

This section gives a distributed workflow process mining framework that eventually

rediscovers a structured workflow process model from the distributed workflow

fragments’ execution event logs formatted in the temporal fragments of the previous

section. The framework consists of a series of concepts and algorithms. However, we
particularly focus on distributed workflow mining algorithms that are able to rediscover a

structured workflow process model from a series of workflow fragment traces

conceptually modeled by the concept of temporalworkcases. Finally, in order to prove the

correctness of the algorithms, we show how it works for the simple structured workflow

process model introduced in Fig. 2 and Table 1, as an example.

4.1. Framework

The distributed workflow process mining framework is illustrated in Fig. 5. The

framework starts from the distributed workflow fragment event logs written in the XML-

based workflow fragment event log language. The workflow event logging components
residing in the distributed workflow enactment engines store all workflow fragments’

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 543

execution event histories onto their own logging repositories. The workflow fragment

event logs might be generated through the following three types of engine components:

 Event triggering components — Requester and Worklist Handler

 Event formatting components — Workcase and Object Pool

 Event logging components — Log Agent and Log File Storage

Fig. 5. The distributed workflow process mining framework

The event triggering components handle the workflow fragment enactment
services requested from the workflow clients, and the event formatting components try to

compose the XML-based fragment event log messages after performing the requested

services, and finally the event logging components, especially which is called the log

agents, take in charge of the responsibility of the fragment event logging mechanism.

Once each log agent receives the fragment event logs, and then transforms them into the

XML-based fragment event log messages, and store the transformed messages onto the

Log File Storage. From the XML-based workflow fragment event logs on each of the log

file storages, it is possible to build a workflow fragment mining warehouse on each

computing node of the distributed workflow systems, which has a cube with three

dimensions, such as workflow fragment models, fragment instances, and activities. From

the cube we extract a set of temporal fragments (traces) that is instantiated from a

workflow fragment model. A temporal fragment is a temporal order of activity
executions within an instance of the corresponding workflow fragment model, and it will

be formally represented by a temporal fragment model. The details of the temporal

fragment and its related models are precisely defined in the next section. Finally, the

distributed workflow fragment rediscovery algorithm rediscovers a workflow fragment

model by incrementally integrating a series of workflow fragment models, , one-

 544 K. P. Kim (2012)

by-one. The details of the algorithm and its operational example are described in the next

sections, too.

Definition 6. Workflow Fragment Log and Warehouse. Let Ii = {
 , ...,

 } be a
set of completed workflow fragment instances (m is the number of fragment instances)

that have been instantiated from a vertical/horizontal workflow fragment model, WFi. A

workflow fragment warehouse consists of a set of workflow fragment logs, WFL(I1), ...,

WFL(In), where WFL(Ii) = ∀WFT(ci ∈ Ii), and n is the number of workflow fragment

models managed in a single node of a distributed workflow system.

Based on these defined concepts, we are able to prepare the temporal fragments that

become the input data of the workflow fragment mining algorithm proposed in this paper.
Additionally, according to the types of temporal fragments, we can build three different

types of workflow fragment logs and their warehouses as defined in [Definition 6].

Conclusively speaking, the workflow fragment mining algorithm may consider taking the

temporal fragments, as in put data, coming from one of three workflow fragment warehouse

types ScheduledTime-based Warehouse, StartedTime-based Warehouse, and CompletedTime-

based Warehouse. Also, the algorithm may simultaneously take two types of temporal

information such as ScheduledTime/CompletedTime or StartedTime/CompletedTime to

rediscover workflow fragment models. In this case, the algorithm needs to take two types

of the temporal fragments, each of which is belonged to its warehouse type, respectively.

The algorithm presented in this paper will be taking care of the Started Time-based

workflow fragment warehouse as the source of the temporal fragments. Nevertheless, it is

sure for the algorithm to be able to be extended so as to handle two types of the temporal
fragments as its input data.

4.2. Mining workflow fragment models

Actually, a workflow fragment mining system instantiated from the framework can be

characterized by its underlying workflow fragment mining algorithm. Also, the system is

depended on how to fragment the original structured workflow process model. If the

original model is vertically fragmented, then the system works with the vertical workflow

fragment mining algorithm, and the system works with the horizontal workflow

fragment mining algorithm if it is horizontally fragmented. Also, the workflow fragment

logs and warehouses can be organized by the type of the fragmentation, too. This paper
tries to deploy a possible horizontal fragmentation-based approach for rediscovering the

horizontal workflow fragment models, and a possible vertical fragmentation-based

approach for mining the vertical workflow fragment models, as well.

4.2.1. Horizontal temporal fragments

The detailed procedure for rediscovering the horizontal workflow fragment models from

the distributed workflow fragment logs is illustrated in Fig. 6. As shown in Fig. 4, the

horizontal workflow fragments of the sample structured workflow process model introduced

in the previous section are modeled and distributed. So, based on their enactment event logs,

two kinds of the horizontal fragment logs are created under the control of their own
distributed workflow enactment components. From each of the horizontal fragment logs, it is

possible to make groups of horizontal temporal fragments, as shown in the middle part of

Fig. 6. Each of the horizontal temporal fragment groups can be formally represented by a

horizontal workflow fragment model defined in [Definition 7], and it also can be

graphically modeled as shown in the right-most part of Fig. 6. The primary reason we use

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 545

the formal representation of the horizontal workflow fragment model is just because it is

surely convenient in composing the structured workflow process mining algorithm.

Fig. 6. Horizontal workflow fragment models

Fig. 7. Filtering horizontal workflow fragment logs

Definition 7. Horizontal Workflow Fragment Model (HWFM). A horizontal

workflow fragment model is formally defined through 3-tuple HWF = (ω, P, S) over an

activity set A, where

 P is a predecessor activity of some external workcase model, which is connected

into the current fragment model;

 S is a successor activity of some external workcase model, which is connected from

the current fragment model;

 = ,

where, : A → (α ∈ A) is a single-valued mapping function of an activity

to its immediate successor in a horizontal temporal fragment, and : A → (α ∈ A) is

 546 K. P. Kim (2012)

a single-valued mapping function of an activity to its immediate predecessor in a

horizontal temporal fragment.

One possible solution for mining the horizontal temporal fragment groups from

the horizontal fragment logs is to use a filtering approach with multiple layers, as

illustrated in Fig. 7. Each layer in the multiple layered filter is to be incrementally built

whenever a mismatched temporal fragment is passed through the filter’s layers. The
figure shows a conceptual idea for the horizontal workflow fragment mining algorithm.

The details of the algorithm won’t be described in this paper because of the page

limitation.

4.2.2. Vertical temporal fragments

The detailed procedure for mining the vertical workflow fragment models from the

distributed workflow fragment logs is illustrated in Fig. 8. As shown in Fig. 3, the vertical

workflow fragments of the sample structured workflow process model introduced in the

previous section are modeled and distributed. So, based on their enactment event logs,

three kinds of the vertical fragment logs are created under the control of their own
distributed workflow enactment components. From each of the vertical fragment logs, it is

possible to make groups of vertical temporal fragments, as shown in the 2nd step of Fig.

8 that illustrates a stepwise approach for rediscovering vertical fragment models. Each of

the vertical temporal fragment groups can be formally represented by a vertical workflow

fragment model defined in [Definition 8], and it also can be graphically modeled as

shown in the 3rd part of Fig. 8. As you can see in the stepwise approach of Fig. 8, the

group of vertical fragment models with a same instance ID will be eventually matched

with one of the horizontal fragment models, which is exactly same to one of the possible

control-paths of the original structured workflow model. As a necessary consequence, it

must be definitely possible to rediscover the exactly same horizontal temporal fragment

models from the vertical fragment logs.

Conclusively speaking, the vertical fragmentation-based mining approach is able to
rediscover all possible controlpaths (Park & Kim, 2008), each of which is exactly same

to each of the horizontal temporal fragment models, and finally which are used to

rediscover the original structured workflow process model by the workflow process

mining algorithm to be presented in the next section.

Fig. 8. Vertical workflow fragment models

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 547

Definition 8. Vertical Workflow Fragment Model (VWFM). A vertical workflow

fragment model is formally defined through 3-tuple VWF = (υ, P, S) over an activity set

A, where

 P is a predecessor activity of some external workcase model, which is connected

into the current fragment model;

 S is a successor activity of some external workcase model, which is connected from

the current fragment model;

 ,

where, : A → (α ∈ A) is a single-valued mapping function of an activity to

its immediate successor in a vertical temporal fragment, and : A → (α ∈ A) is a

single-valued mapping function of an activity to its immediate predecessor in a vertical

temporal fragment.

Also, one possible solution for mining the vertical temporal fragment groups from

the vertical fragment logs is to use the filtering approach illustrated in Fig. 7. Each

layer in the multiple layered filter is to be incrementally built whenever a mismatched

vertical temporal fragment is passed through the filter’s layers.

4.2.3. Mining structured workflow process models

This section gives a full detail of the distributed workflow process mining algorithm and

demonstrates the algorithm’s correctness though an example with the sample structured

workflow process model. More specifically speaking, the algorithm will build up one

reasonable structured workflow process model by amalgamating those horizontal/vertical

temporal fragment groups that are rediscovered from the distributed workflow fragment

logs by the previous horizontal/vertical workflow fragment mining algorithms. Each of

the horizontal/vertical temporal fragment groups is embodied in a horizontal/vertical

workflow fragment model as explained in the previous section. In summary, the central
ideas of the algorithm are the followings:

 The algorithm repeatedly modifies a temporarily rediscovered structured workflow

process model by incorporating a new horizontal/vertical workflow fragment

(HWF/VWF) model until running out all models. Thus, it is an incremental

algorithm: after seeing the first HWF/VWF model the algorithm generates a

reasonable structured workflow process model for that HWF/VWF model and upon

seeing the second HWF/VWF model, it amalgamates the new HWF/VWF model

into the existing reasonable model.

 The algorithm is a series of rewrite operations that transform the reasonable

model plus HWF/VWF model into a new reasonable model until bringing up to the

last. As a consequence of these amalgamating operations, the final reasonable model

becomes the structured workflow process model rediscovered from the horizontally or
vertically distributed workflow fragment logs.

4.3.1. The basic rediscovery principles

As described in the previous section, a structured workflow process model is designed

through the three types of control transitions sequential, disjunctive and conjunctive

transition with keeping the matched pair and proper nesting properties. Therefore, the

horizontal/vertical distributed workflow mining algorithm must be obligated to rediscover

these transitions by amalgamating the horizontal temporal fragment models rediscovered

from the horizontal/vertical fragment logs. The basic idea of the amalgamation procedure

 548 K. P. Kim (2012)

conducted by the algorithm is to incrementally amalgamate one horizontal/vertical

fragment model after another. Also, during the amalgamation procedure works, the most

important thing is to observe and seek those three types of transitions.

Fig. 9. The rediscovery principle of AND-transition

Fig. 10. The rediscovery principle of OR-transition

Precisely, basic amalgamating principles seeking each of the transition types are

as follows: if a certain activity is positioned at the same temporal order in all

horizontal/vertical fragment models, then the activity is to be involved in a sequential

transition; else if the activity is at the different temporal order in some horizontal/vertical

fragment models, then we can infer that the activity is to be involved in a conjunctive

transition; otherwise if the activity is either presented in some horizontal/vertical

fragment models or not presented in the other horizontal/vertical fragment models, then it
has got to be involved in a disjunctive transition. As simple examples of the

amalgamating principles, Fig. 9 and Fig. 10 algorithmically illustrate the amalgamation

procedures rediscovering a conjunctive transition and a disjunctive transition,

respectively.

4.3.2. Distributed workflow process mining algorithm

Based upon the basic rediscovery principles, we conceive a distributed workflow process

mining algorithm in order to rediscover a reasonable structured workflow process model

by amalgamating the horizontal/vertical workflow fragment models. Because of the page

limitation this section would not make a full description of the algorithm. However, we just
introduce the detailed algorithm as follows, which is pseudo-coded as detail as possible with

some explanations in comments, so that one is able to easily grasp the algorithm without

the full description.

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 549

PROCEDURE DistributedMining():
1: Input : A Set of horizontal/vertical Workflow Fragment Models, ∀(hwf / vwf

[i], i = 1..m);

2: where, hwf / vwf [1] == START(▽), hwf / vwf [m] ==

END(△);

3: Output : (1) A Rediscovered Structured Workflow Process Model (SWPM),

R = (δ, κ, I, O);

4: - The Activity Set of SWPM, A = {
}, (hwf[i], i = 1..m) ∈

A;

5: (2) A Set of Horizontal/vertical Workflow Fragment Models

(HWFMs/VWFMs), ∀HWF = (ω, P, S) or VWF = (υ, P, S);

6:

7: Initialize :
(START(▽)) ← {NULL};

8:
(END(△)) ← {NULL};

9: PROCEDURE DistributedMining()

10: BEGIN

11: WHILE ((hwf [] ← readOneWorkcase()) ≠ EOF) DO

12: i ← 1;

13: WHILE (hwf [i] ≠ END(△)) DO

14: ωo / υo (hwf / vwf [i]) ← hwf / vwf [i + 1]; i ← i + 1; ωi (hwf [i])

← hwf [i − 1]; or υi (vwf [i]) ← vwf [i − 1];

15: END WHILE

16: * Rediscovering the temporary RWPM from the current WCM */

17: FOR (i = 1; i < m; i++) DO

18: IF (Is δo (hwf [i]) an empty-set?) THEN

19: δo (hwf [i]) ← ωo (hwf [i]); or δo (vwf [i]) ← υo (vwf [i]);

20: continue;

21: END IF

22: IF (isANDTransition(hwf / vwf [i], ωo / υo (hwf / vwf [i])) ==

TRUE) THEN

23: continue;

24: END IF

25: FOR (each set, , of sets in δo (hwf / vwf [i])) DO

26: SWITCH (checkupTransition(, ωo / υo (hwf / vwf

[i])) DO

27: Case ’fixed transition’:

28: Case ’sequential relationship’:

29: δo (hwf / vwf [i]) ← ωo / υo (hwf / vwf [i]);

30: break;

31: Case ’conjunctive transition (AND-split)’:

32: ANDset ← makeANDTransition(, ωo / υo

(hwf / vwf [i]));

33: δo (hwf / vwf [i]) ← δo (hwf / vwf [i])

ANDset;

34: eliminatePreviousTransition(, ωo / υo (hwf

 550 K. P. Kim (2012)

/ vwf [i]));

35: break;

36: Case ’disjunctive transition (OR-split)’:

37: ORset ← makeORTransition(, ωo / υo (hwf

/ vwf [i]));

38: δo (hwf / vwf [i]) ← δo (hwf / vwf [i]) ORset;

39: eliminatePreviousTransition(, ωo / υo (hwf

/ vwf [i]));

40: break;

41: Default: /* Exceptions */

42: :printErrorMessage();

43: break;

44: END SWITCH

45: END FOR

46: END FOR

47: END WHILE

48: finishupTheRediscoveredModel(); /* with its input-activity sets, (δi (hwf

/vwf [i]), i = 1..n) and its transition-conditions */

49: δi (α1) ← {START(▽)}; δo (αn) ← {END(△)};

50: PRINTOUT

51: (1) The Rediscovered Structured Workflow Process Model, SWPM, R

= (δ, κ, I, O);

52: (2) A Set of the Horizontal/Vertical Workflow Fragment Models,

HWFs/VWFs, ∀HWF = (ω, P, S) or VWF = (υ, P, S);

53: END PROCEDURE

4.3.3. Constraints of the algorithm

As emphasized in the previous sections, this algorithm is operable on the concept of

horizontally/vertically distributed structured workflow process model that retains the proper

nesting and matched pair properties (Kim & Ellis, 2007). Keeping these properties causes to

constrain the algorithm as well as the modeling work; nevertheless, it might be worthy to

preserve the constraints because they can play a very important role in increasing the

integrity of the workflow model. Additionally, not only the improperly nested workflow

model makes its analysis complicated, but also the workflow model with unmatched pairs

may be stuck and run into a deadlock situation during its runtime execution. Another
important issue in designing horizontally/vertically distributed work-flow process mining

algorithms is about how to handle loop transitions in a structured workflow process

model, because they may produce not only a lot of workflow event logs but also much

more complicated patterns of temporal fragments. Precisely, according to the number of

repetitions and the inside structure of a loop transition, the model’s execution may

generate very diverse and complicated patterns of temporal fragments. Therefore, the

algorithm pro-posed in this paper has got to be extended in order to properly handle the

loop transitions. We would leave this issue to our future research work.

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 551

5. Related works

So far, there have been several workflow mining related researches and developments in

the workflow literature. Some of them have proposed the algorithms van der Aalst et al.,

2003; Schimm, 2004; Pinter & Golani, 2004; Kim & Ellis, 2006; Agrawal, Gunopulos, &

Leymann, 1998; de Medeiros, van Dongen, van der Aalst, & Weijters, 2004; Ellis, Kim, &
Rembert, 2006; Silva, Zhang, & Shanahan, 2005; Gaaloul & Godart, 2005; Kim & Ellis,

2007; Kim, 2009) for workflow mining functionality, and others have developed the

workflow mining systems and tools (Herbst & Karagiannis, 2004; Kim, 2005). Particularly,

as the first industrial application of the workflow mining, J. Herbsta and D.

Karagiannisb in (Herbst & Karagiannis, 2004) presented the most important results of their

experimental evaluation and experiences of the InWoLvE workflow mining system.

However, almost all of the contribution are still focusing on the development of the basic

functionality of workflow mining techniques. Especially, W.M.P. van der Aalst’s

research group, through the papers of (van der Aalst et al., 2003; de Medeiros et al., 2004;

Medeiros & Weijters, 2005), proposed the fundamental definition and the use of workflow

mining to support the design of workflows, and described the most challenging problems and
some of the workflow mining approaches and algorithms. Also, Clarence Ellis’s research

group newly defined the scope of workflow mining concept from the view point of that

workflow systems are "people systems" that must be designed, deployed, and understood

within their social and organizational contexts. Thus, they argue in (Kim & Ellis, 2006; Ellis,

Kim, & Rembert, 2006; Ellis et al., 2006; Kim & Ellis, 2007; Kim, 2009) that there is a need

to expand the concept of workflow discovery beyond the process dimension to encompass

multidimensional perspective such as social, organizational, and informational perspectives;

as well as other perspectives. This paper is the partial result of the collaborative research

on mining the workflow’s multidimensional perspectives, and also it would be the

pioneering result in the distributed workflow process mining issues.

6. Conclusion

This paper proposed the distributed structured workflow process mining approaches

rediscovering a structured workflow process from the distributed workflow fragment logs.

The approach is based on the structured workflow process model designed by the

information control net workflow modeling methodology, and it conceived the workflow

fragmentation techniques such as vertical fragmentation, horizontal fragmentation and

hybrid. Finally, This paper showed that it is able to properly handle the distributed workflow

fragments logs with the enactment event histories of the three different types of control

transitions—sequential, conjunctive and disjunctive transitions—on the

horizontally/vertically fragmented workflow processes through the horizontally/vertically

distributed workflow fragment logs, as example. Also, the proposed approaches need to be
extended to cope with the loop-structured distributed workflow models in the near future. In

a consequence, according for the distributed enterprise computing environments like

enterprise grid/P2P and enterprise cloud computing environments to be hot-issued in the

literature, distributed workflow process mining methodologies and systems are rapidly

growing and coping with a wide diversity of domains in terms of their applications and

working environments. So, the literature needs various, advanced, and specialized distributed

workflow mining techniques and architectures. We strongly believe that this work might

be one of those impeccable attempts and pioneering contributions for improving and

advancing the distributed workflow fragmentation and mining technology.

 552 K. P. Kim (2012)

Acknowledgements

This research was supported by the National Research Foundation’s Basic Research

Grant, No. 2012-006971, South Korea. Also, this paper is extended from the paper (Kim,

2009) published in IWDXP2009.

References

Agrawal, R., Gunopulos, D., & Leymann, F. (1998). Mining process models from

workflow logs. Proceeding of Sixth International Conference on Extending Database

Technology (pp. 469–483).

de Medeiros, A. K. A., van Dongen, B. F., van der Aalst, W. M. P., & Weijters, A. J. M.

M. (2004). Process mining: Extending the α-algorithm to mine short loops. BETA

Working Paper Series, WP 113, Eindhoven University of Technology, Eindhoven.

Ellis, C. A. (1979). Information control nets: A mathematical model of office information

flow. Proceedings of the ACM Conference on Simulation, Measurement and
Modeling of Computer Systems (pp. 225–240). Boulder, Colorado.

Ellis, C. A., Kim, K.-H., & Rembert, A. J. (2006). Workflow mining: Definitions,

techniques, and future directions. In L. Fischer (ed.) Workflow Handbook (pp. 213–

228). Lighthouse Point: Future Strategies.

Ellis, C. A., Rembert, A. J., Kim, K.-H., & Wainer, J. (2006). Beyond worflow mining.

Proceedings of the 5th International Business Process Management Conference

(BPM’06).

Gaaloul, W., & Godart, C. (2005). Mining workflow recovery from event based logs.

Lecture Notes in Computer Science, 3649, 169–185.

Herbst, J. & Karagiannis, D. (2004). Workflow mining with InWoLvE. Computers in

Industry, 53(3), 245–264.
Kim, K. (2005). A workflow trace classification mining tool. International Journal of

Computer Science and Network Security, 5(11), 19–25.

Kim, K. (2006). A XML-based workflow event logging mechanism for workflow mining.

Lecture Notes in Computer Science, 3842, 132–136.

Kim, K., & Ellis, C. (2006). Workflow reduction for reachable-path rediscovery in

workflow mining. Series of Studies in Computational Intelligence: Foundations and

Novel Approaches in Data Mining, 9, 289–310.

Kim, K.-H. (2007). A layered workflow knowledge Grid/P2P architecture and its models

for future generation workflow systems. Future GenrationComputer Systems, 23(3),

304–316.

Kim, K., & Ellis, C. A. (2007). σ-Algorithm: Structured workflow process mining

through amalgamating temporal workcases. Lecture Notes in Artificial Intelligence,
4426, 119–130.

Kim, K. (2009). Mining workflow processes from XML-based distributed workflow

event logs. IEEE Proceedings of International Workshop on Distributed XML

Processing: Theory and Practice (pp. 587–594), Austria.

Kim, K. (2012). A model-driven workflow fragmentation framework for collaborative

workflow architectures and systems. Journal of Network and Computer Applications,

35(1), 97–110.

Liu, R., & Kumar, A. (2005). An analysis and taxonomy of unstructured workflows.

Lecture Notes in Computer Science, 3649, 268–284.

Medeiros, A. K. A. D., & Weijters, A. J. M. M. (2005). Genetic process mining. Lecture

Notes in Computer Science, 3536, 48–69.

 Knowledge Management & E-Learning: An International Journal, Vol.4, No.4. 553

Park, M., & Kim, K. (2008). Control-path oriented workflow intelligence analyses.

Journal of Information Science and Engineering, 24(2), 343–359.

Park, M. J., & Kim, K. (2010). A workflow event logging mechanism and its

implications on quality of workflows. Journal of Information Science and

Engineering, 26, 1817–1830.

Pinter, S. S., & Golani, M. (2004). Discovering workflow models from activities’

lifespans. Computers in Industry, 53(3), 283–296.
Schimm, G. (2004). Mining exact models of concurrent workflows. Computers in

Industry, 53(3), 265–281.

Silva, R., Zhang, J., & Shanahan, J. G. (2005). Probabilistic workflow mining.

Proceedings of the 11th ACM SIGKDD international conference on Knowledge

discovery in data mining (pp. 275–284).

van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., &

Weijters, A. J. M. M. (2003).Workflow mining: A survey of issues and approaches.

Data and Knowledge Engineering, 47(2), 237–267.

